188 research outputs found

    The plant specific CDKB1-CYCB1 complex mediates homologous recombination repair in Arabidopsis

    Get PDF
    Upon DNA damage, cyclin-dependent kinases (CDKs) are typically inhibited to block cell division. In many organisms, however, it has been found that CDK activity is required for DNA repair, especially for homology-dependent repair (HR), resulting in the conundrum how mitotic arrest and repair can be reconciled. Here, we show that Arabidopsis thaliana solves this dilemma by a division of labor strategy. We identify the plant-specific B1-type CDKs (CDKB1s) and the class of B1-type cyclins (CYCB1s) as major regulators of HR in plants. We find that RADIATION SENSITIVE 51 (RAD51), a core mediator of HR, is a substrate of CDKB1-CYCB1 complexes. Conversely, mutants in CDKB1 and CYCB1 fail to recruit RAD51 to damaged DNA. CYCB1; 1 is specifically activated after DNA damage and we show that this activation is directly controlled by SUPPRESSOR OF GAMMA RESPONSE 1 (SOG1), a transcription factor that acts similarly to p53 in animals. Thus, while the major mitotic cell-cycle activity is blocked after DNA damage, CDKB1-CYCB1 complexes are specifically activated to mediate HR

    Oxygen Consumption Can Regulate the Growth of Tumors, a New Perspective on the Warburg Effect

    Get PDF
    The unique metabolism of tumors was described many years ago by Otto Warburg, who identified tumor cells with increased glycolysis and decreased mitochondrial activity. However, "aerobic glycolysis" generates fewer ATP per glucose molecule than mitochondrial oxidative phosphorylation, so in terms of energy production, it is unclear how increasing a less efficient process provides tumors with a growth advantage.We carried out a screen for loss of genetic elements in pancreatic tumor cells that accelerated their growth as tumors, and identified mitochondrial ribosomal protein L28 (MRPL28). Knockdown of MRPL28 in these cells decreased mitochondrial activity, and increased glycolysis, but paradoxically, decreased cellular growth in vitro. Following Warburg's observations, this mutation causes decreased mitochondrial function, compensatory increase in glycolysis and accelerated growth in vivo. Likewise, knockdown of either mitochondrial ribosomal protein L12 (MRPL12) or cytochrome oxidase had a similar effect. Conversely, expression of the mitochondrial uncoupling protein 1 (UCP1) increased oxygen consumption and decreased tumor growth. Finally, treatment of tumor bearing animals with dichloroacetate (DCA) increased pyruvate consumption in the mitochondria, increased total oxygen consumption, increased tumor hypoxia and slowed tumor growth.We interpret these findings to show that non-oncogenic genetic changes that alter mitochondrial metabolism can regulate tumor growth through modulation of the consumption of oxygen, which appears to be a rate limiting substrate for tumor proliferation

    Gene therapy for carcinoma of the breast: Pro-apoptotic gene therapy

    Get PDF
    The dysregulation of apoptosis contributes in a variety of ways to the malignant phenotype. It is increasingly recognized that the alteration of pro-apoptotic and anti-apoptotic molecules determines not only escape from mechanisms that control cell cycle and DNA damage, but also endows the cancer cells with the capacity to survive in the presence of a metabolically adverse milieu, to resist the attack of the immune system, to locally invade and survive despite a lack of tissue anchorage, and to evade the otherwise lethal insults induced by drugs and radiotherapy. A multitude of apoptosis mediators has been identified in the past decade, and the roles of several of them in breast cancer have been delineated by studying the clinical correlates of pathologically documented abnormalities. Using this information, attempts are being made to correct the fundamental anomalies at the genetic level. Fundamental to this end are the design of more efficient and selective gene transfer systems, and the employment of complex interventions that are tailored to breast cancer and that are aimed concomitantly towards different components of the redundant regulatory pathways. The combination of such genetic modifications is most likely to be effective when combined with conventional treatments, thus robustly activating several pro-apoptotic pathways

    Tumor-infiltrating monocytes/macrophages promote tumor invasion and migration by upregulating S100A8 and S100A9 expression in cancer cells

    No full text
    Myeloid cells promote development of distant metastases, but little is known about the molecular mechanisms underlying this process. Here we have begun to uncover the effects of myeloid cells on cancer cells in a mouse model of liver metastasis. Monocytes/macrophages, but not granulocytes, isolated from experimental liver metastases stimulated migration and invasion of MC38 colon and Lewis lung carcinoma cells. In response to conditioned media from tumor-infiltrating monocytes/macrophages, cancer cells upregulated S100a8 and S100a9 mRNA expression through an ERK-dependent mechanism. Suppression of S100A8 and S100A9 in cancer cells using shRNA significantly diminished migration and invasion in culture. Downregulation of S100A8 and S100A9 had no effect on subcutaneous tumor growth. However, colony size was greatly reduced in liver metastases with decreased invasion into adjacent tissue. In tissue culture and in liver colonies derived from cancer cells with knockdown of S100A8 and S100A9, MMP2 and MMP9 expression were decreased, consistent with the reduction in migration and invasion. Our findings demonstrate that monocytes/macrophages in the metastatic liver microenvironment induce S100A8 and S100A9 in cancer cells, and that these proteins are essential for tumor cell migration and invasion. S100A8 and S100A9, however, are not responsible for stimulation of proliferation. This study implicates S100A8 and S100A9 as important mediators of tumor cell aggressiveness, and highlights the therapeutic potential of S100A8 and S100A9 for interference of metastasis

    GeneTransfection for Metastasis Research Using Animal Models.

    No full text
    One means of testing a candidate gene for involvement in the metastatic process is to alter the expression of that gene in a tumor cell and then to test the metastatic potential of the altered cells. In designing such experiments, it is crucial to take into account the factor of tumor heterogeneity (1). Some cell lines or cultures contain highly heterogeneous populations in regard to metastasis. Upon cloning these cells, some clones will be highly metastatic, but others will not. Thus, selection of a clone itself might skew the results if only a few clones are evaluated. Furthermore, the use of pooled populations after transfection must be considered with caution because the population may contain cells with a variety of metastatic potentials. To avoid these problems, it is necessary to do a preliminary experiment in which the chosen parental cell is subcloned and the subclones are tested for metastatic behavior. If the subclones have a similar metastatic potential to the parental line, then it should be a suitable recipient for metastasis studies. If, however, there is considerable variability in the subclones, either the subclones can be tested for stability or another more stable cell line should be sought

    Targeting tumor cells by enhancing radiation sensitivity.

    No full text
    The work of Al Knudson created the paradigm in which we see cancer as a result of the accumulation of multiple mutations. Our goal has been to exploit these mutations to develop strategies to enhance therapy for cancer by targeting the malignant cell while sparing the normal tissue. In studying the RAS oncogene, we observed that its expression when activated resulted in enhanced radioresistance. Conversely, inhibition of RAS made cells with activated RAS more radiosensitive. Hence, we postulated that it would be possible to sensitize tumors with RAS mutations to radiation without affecting the sensitivity of the normal tissue in patients with such tumors. This proved to be the case in animal models and has led to current clinical trials. These studies raised the question of identifying the downstream effectors of RAS that are responsible for altering the radiosensitivity of cells. We have found that phosphoinositide-3-kinase (PI3 kinase) is a critical component of this pathway. Blocking PI3 kinase enhanced the radiation response in vitro or in vivo of cells actively signaling through that pathway, but did not affect cells not actively signaling through PI3 kinase at the time of irradiation. Identification of tumors with active signaling in this pathway by immunohistochemical staining for phosphorylated AKT, the downstream target of PI3 kinase correlated with those patients for which radiation failed to achieve local control. Thus, characterization of the active signaling pathways in a given tumor might enable the selection of patients likely to respond to radiation. Pathways upstream from RAS may also be useful targets to consider for enhancing radiation therapy. Epidermal growth factor receptor (EGFR), which is upstream of PI3 kinase, may also mediate resistance through a common pathway. In addition to EGFR and RAS, PTEN can also regulate the PI3 kinase pathway. Identifying a common signal for EGFR, RAS, and PTEN that results in radiation resistance may uncover targets for developing molecular-based radiosensitization protocols for tumors resistant to radiation and thus lead to improvement of local control

    Regulation of matrix metalloproteinase-9 (MMP-9) by translational efficiency in murine prostate carcinoma cells.

    No full text
    Expression of increased levels of matrix metalloproteinase-9 (MMP-9) has been implicated in tumor progression and angiogenesis. Much of our knowledge of the controls of MMP-9 levels has focused on transcription. Here we show that MMP-9 levels are also controlled by translational efficiency in murine prostate carcinoma cells. The murine prostate carcinoma cells 148-1,LMD and 148-1,PA were derived from a single mouse that had been implanted with urogenital sinus transformed by ras and myc. 148-1,PA secretes little MMP-9 yet has equivalent amounts of MMP-9 mRNA as the cell line 148-1,LMD that secretes substantially more. Infection with a retroviral vector for murine MMP-9 led to more expression of MMP-9 in both cases, but the differential remained. Human MMP-9 is equally expressed in both cells after infection with a vector for human MMP-9 indicating that the effect is species-specific. Pulse chase analysis revealed that MMP-9 was synthesized more rapidly in the 148-1,LMD cells than in the 148-1,PA cells. Markedly more MMP-9 mRNA was associated with polysomes in the cell line synthesizing more MMP-9. These results indicate regulation of MMP-9 synthesis at the level of translational efficiency

    The centrosome and the DNA damage induced checkpoint.

    No full text
    The centrosome, the microtubule-organizing center of the cell, acts as a localization point, where signaling molecules are able to interact. Many kinases and phosphatases critical for regulation of DNA damage signaling pathways localize to the centrosome. This review will discuss the possible involvement of the centrosome in mediating DNA damage checkpoint control, in particular the effect of DNA damage signaling pathways involved in initiation or maintenance of cell cycle arrest on the centrosome. The mechanisms that lead to centrosome abnormalities such as centrosome hyperamplification and multipolarity in response to DNA damage will also be addressed
    • …
    corecore