175 research outputs found

    Limited Value of Staging Squamous Cell Carcinoma of the Anal Margin and Canal Using the Sentinel Lymph Node Procedure: A Prospective Study with Long-Term Follow-Up

    Get PDF
    Background. Selection of patients with anal cancer for groin irradiation is based on tumor size, palpation, ultrasound, and fine needle cytology. Current staging of anal cancer may result in undertreatment in small tumors and overtreatment of large tumors. This study reports the feasibility of the sentinel lymph node biopsy (SLNB) in patients with anal cancer and whether this improves the selection for inguinal radiotherapy. Methods. A total of 50 patients with squamous anal cancer were evaluated prospectively. Patients without a SLNB (n = 29) received irradiation of the inguinal lymph nodes based on lymph node status, tumor size, and location of the primary tumor. Inguinal irradiation treatment in patients with a SLNB was based on the presence of metastases in the SLN. Results. SLNs were found in all 21 patients who underwent a SLNB. There were 5 patients (24%) who had complications after SLNB and 7 patients (33%) who had a positive SLN and received inguinal irradiation. However, 2 patients with a tumor-free SLN and no inguinal irradiation developed lymph node metastases after 12 and 24 months, respectively. Conclusions. We conclude that SLNB in anal cancer is technically feasible. SLNB can identify those patients who would benefit from refrain of inguinal irradiation treatment and thereby reducing the incidence of unnecessary inguinal radiotherapy. However, because of the occurrence of inguinal lymph node metastases after a tumor-negative SLNB, introduction of this procedure as standard of care in all patients with anal carcinoma should be done with caution to avoid undertreatment of patient who otherwise would benefit from inguinal radiotherapy

    Expression of Telomerase and Telomere Length Are Unaffected by either Age or Limb Regeneration in Danio rerio

    Get PDF
    BACKGROUND:The zebrafish is an increasingly popular model for studying many aspects of biology. Recently, ztert, the zebrafish homolog of the mammalian telomerase gene has been cloned and sequenced. In contrast to humans, it has been shown that the zebrafish maintains telomerase activity for much of its adult life and has remarkable regenerative capacity. To date, there has been no longitudinal study to assess whether this retention of telomerase activity equates to the retention of chromosome telomere length through adulthood. METHODOLOGY/PRINCIPAL FINDINGS:We have systematically analyzed individual organs of zebrafish with regard to both telomere length and telomerase activity at various time points in its adult life. Heart, gills, kidney, spleen, liver, and intestine were evaluated at 3 months, 6 months, 9 months, and 2 years of age by Southern blot analysis. We found that telomeres do not appreciably shorten throughout the lifespan of the zebrafish in any organ. In addition, there was little difference in telomere lengths between organs. Even when cells were under the highest pressure to divide after fin-clipping experiments, telomere length was unaffected. All aged (2 year old) tissues examined also expressed active amounts of telomerase activity as assessed by TRAP assay. CONCLUSIONS/SIGNIFICANCE:In contrast to several other species including humans, the retention of lifelong telomerase and telomeres, as we have reported here, would be necessary in the zebrafish to maintain its tremendous regenerative capacity. The ongoing study of the zebrafish's ability to maintain telomerase activity may be helpful in unraveling the complexity involved in the maintenance (or lack thereof) of telomeres in other species such the mouse or human

    Trust and Reciprocity: Are Effort and Money Equivalent?

    Get PDF
    Trust and reciprocity facilitate cooperation and are relevant to virtually all human interactions. They are typically studied using trust games: one subject gives (entrusts) money to another subject, which may return some of the proceeds (reciprocate). Currently, however, it is unclear whether trust and reciprocity in monetary transactions are similar in other settings, such as physical effort. Trust and reciprocity of physical effort are important as many everyday decisions imply an exchange of physical effort, and such exchange is central to labor relations. Here we studied a trust game based on physical effort and compared the results with those of a computationally equivalent monetary trust game. We found no significant difference between effort and money conditions in both the amount trusted and the quantity reciprocated. Moreover, there is a high positive correlation in subjects' behavior across conditions. This suggests that trust and reciprocity may be character traits: subjects that are trustful/trustworthy in monetary settings behave similarly during exchanges of physical effort. Our results validate the use of trust games to study exchanges in physical effort and to characterize inter-subject differences in trust and reciprocity, and also suggest a new behavioral paradigm to study these differences

    Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis

    Get PDF
    Most tumors exhibit increased glucose metabolism to lactate, however, the extent to which glucose-derived metabolic fluxes are used for alternative processes is poorly understood [1, 2]. Using a metabolomics approach with isotope labeling, we found that in some cancer cells a relatively large amount of glycolytic carbon is diverted into serine and glycine metabolism through phosphoglycerate dehydrogenase (PHGDH). An analysis of human cancers showed that PHGDH is recurrently amplified in a genomic region of focal copy number gain most commonly found in melanoma. Decreasing PHGDH expression impaired proliferation in amplified cell lines. Increased expression was also associated with breast cancer subtypes, and ectopic expression of PHGDH in mammary epithelial cells disrupted acinar morphogenesis and induced other phenotypic alterations that may predispose cells to transformation. Our findings show that the diversion of glycolytic flux into a specific alternate pathway can be selected during tumor development and may contribute to the pathogenesis of human cancer.National Institutes of Health (U.S.)National Cancer Institute (U.S.)Smith Family FoundationDamon Runyon Cancer Research FoundationBurroughs Wellcome Fun

    Mutations in the LKB1 tumour suppressor are frequently detected in tumours from Caucasian but not Asian lung cancer patients

    Get PDF
    Somatic mutations of LKB1 tumour suppressor gene have been detected in human cancers including non-small cell lung cancer (NSCLC). The relationship between LKB1 mutations and clinicopathological characteristics and other common oncogene mutations in NSCLC is inadequately described. In this study we evaluated tumour specimens from 310 patients with NSCLC including those with adenocarcinoma, adenosquamous carcinoma, and squamous cell carcinoma histologies. Tumours were obtained from patients of US (n=143) and Korean (n=167) origin and screened for LKB1, KRAS, BRAF, and EGFR mutations using RT—PCR-based SURVEYOR-WAVE method followed by Sanger sequencing. We detected mutations in the LKB1 gene in 34 tumours (11%). LKB1 mutation frequency was higher in NSCLC tumours of US origin (17%) compared with 5% in NSCLCs of Korean origin (P=0.001). They tended to occur more commonly in adenocarcinomas (13%) than in squamous cell carcinomas (5%) (P=0.066). LKB1 mutations associated with smoking history (P=0.007) and KRAS mutations (P=0.042) were almost mutually exclusive with EGFR mutations (P=0.002). The outcome of stages I and II NSCLC patients treated with surgery alone did not significantly differ based on LKB1 mutation status. Our study provides clinical and molecular characteristics of NSCLC, which harbour LKB1 mutations

    Functional Copy-Number Alterations in Cancer

    Get PDF
    Understanding the molecular basis of cancer requires characterization of its genetic defects. DNA microarray technologies can provide detailed raw data about chromosomal aberrations in tumor samples. Computational analysis is needed (1) to deduce from raw array data actual amplification or deletion events for chromosomal fragments and (2) to distinguish causal chromosomal alterations from functionally neutral ones. We present a comprehensive computational approach, RAE, designed to robustly map chromosomal alterations in tumor samples and assess their functional importance in cancer. To demonstrate the methodology, we experimentally profile copy number changes in a clinically aggressive subtype of soft-tissue sarcoma, pleomorphic liposarcoma, and computationally derive a portrait of candidate oncogenic alterations and their target genes. Many affected genes are known to be involved in sarcomagenesis; others are novel, including mediators of adipocyte differentiation, and may include valuable therapeutic targets. Taken together, we present a statistically robust methodology applicable to high-resolution genomic data to assess the extent and function of copy-number alterations in cancer

    Comparison of tonic spinal cord stimulation, high-frequency and burst stimulation in patients with complex regional pain syndrome: a double-blind, randomised placebo controlled trial

    Get PDF
    BACKGROUND: Complex Regional Pain Syndrome (CRPS) is a disabling disease that is sometimes difficult to treat. Although spinal cord stimulation (SCS) can reduce pain in most patients with CRPS, some do not achieve the desired reduction in pain. Moreover, the pain reduction can diminish over time even after an initially successful period of SCS. Pain reduction can be regained by increasing the SCS frequency, but this has not been investigated in a prospective trial. This study compares pain reduction using five SCS frequencies (standard 40 Hz, 500 Hz, 1200 Hz, burst and placebo stimulation) in patients with CRPS to determine which of the modalities is most effective. DESIGN: All patients with a confirmed CRPS diagnosis that have unsuccessfully tried all other therapies and are eligible for SCS, can enroll in this trial (primary implantation group). CRPS patients that already receive SCS therapy, or those previously treated with SCS but with loss of therapeutic effect over time, can also participate (re-implantation group). Once all inclusion criteria are met and written informed consent obtained, patients will undergo a baseline assessment (T0). A 2-week trial with SCS is performed and, if successful, a rechargeable internal pulse generator (IPG) is implanted. For the following 3 months the patient will have standard 40 Hz stimulation therapy before a follow-up assessment (T1) is performed. Those who have completed the T1 assessment will enroll in a 10-week crossover period in which the five SCS frequencies are tested in five periods, each frequency lasting for 2 weeks. At the end of the crossover period, the patient will choose which frequency is to be used for stimulation for an additional 3 months, until the T2 assessment. DISCUSSION: Currently no trials are available that systematically investigate the importance of variation in frequency during SCS in patients with CRPS. Data from this trial will provide better insight as to whether SCS with a higher frequency, or with burst stimulation, results in more effective pain relief. TRIAL REGISTRATION: Current Controlled Trials ISRCTN3665525

    Epigenetic regulation of caloric restriction in aging

    Get PDF
    The molecular mechanisms of aging are the subject of much research and have facilitated potential interventions to delay aging and aging-related degenerative diseases in humans. The aging process is frequently affected by environmental factors, and caloric restriction is by far the most effective and established environmental manipulation for extending lifespan in various animal models. However, the precise mechanisms by which caloric restriction affects lifespan are still not clear. Epigenetic mechanisms have recently been recognized as major contributors to nutrition-related longevity and aging control. Two primary epigenetic codes, DNA methylation and histone modification, are believed to dynamically influence chromatin structure, resulting in expression changes of relevant genes. In this review, we assess the current advances in epigenetic regulation in response to caloric restriction and how this affects cellular senescence, aging and potential extension of a healthy lifespan in humans. Enhanced understanding of the important role of epigenetics in the control of the aging process through caloric restriction may lead to clinical advances in the prevention and therapy of human aging-associated diseases
    corecore