64 research outputs found

    The role of the segmentation gene hairy in Tribolium

    Get PDF
    Hairy stripes in Tribolium are generated during blastoderm and germ band extension, but a direct role for Tc-h in trunk segmentation was not found. We have studied here several aspects of hairy function and expression in Tribolium, to further elucidate its role. First, we show that there is no functional redundancy with other hairy paralogues in Tribolium. Second, we cloned the hairy orthologue from Tribolium confusum and show that its expression mimics that of Tribolium castaneum, implying that stripe expression should be functional in some way. Third, we show that the dynamics of stripe formation in the growth zone is not compatible with an oscillatory mechanism comparable to the one driving the expression of hairy homologues in vertebrates. Fourth, we use parental RNAi experiments to study Tc-h function and we find that mandible and labium are particularly sensitive to loss of Tc-h, reminiscent of a pair-rule function in the head region. In addition, lack of Tc-h leads to cell death in the gnathal region at later embryonic stages, resulting in a detachment of the head. Cell death patterns are also altered in the midline. Finally, we have analysed the effect of Tc-h knockdown on two of the target genes of hairy in Drosophila, namely fushi tarazu and paired. We find that the trunk expression of Tc-h is required to regulate Tc-ftz, although Tc-ftz is itself also not required for trunk segmentation in Tribolium. Our results imply that there is considerable divergence in hairy function between Tribolium and Drosophila

    A cre-inducible DUX4 transgenic mouse model for investigating facioscapulohumeral muscular dystrophy

    Get PDF
    The Double homeobox 4 (DUX4) gene is an important regulator of early human development and its aberrant expression is causal for facioscapulohumeral muscular dystrophy (FSHD). The DUX4-full length (DUX4-fl) mRNA splice isoform encodes a transcriptional activator; however, DUX4 and its unique DNA binding preferences are specific to old-world primates. Regardless, the somatic cytotoxicity caused by DUX4 expression is conserved when expressed in cells and animals ranging from fly to mouse. Thus, viable animal models based on DUX4-fl expression have been difficult to generate due in large part to overt developmental toxicity of low DUX4-fl expression from leaky transgenes. We have overcome this obstacle and here we report the generation and initial characterization of a line of conditional floxed DUX4-fl transgenic mice, FLExDUX4, that is viable and fertile. In the absence of cre, these mice express a very low level of DUX4-fl mRNA from the transgene, resulting in mild phenotypes. However, when crossed with appropriate cre-driver lines of mice, the double transgenic offspring readily express DUX4-fl mRNA, protein, and target genes with the spatiotemporal pattern of nuclear cre expression dictated by the chosen system. When cre is expressed from the ACTA1 skeletal muscle-specific promoter, the double transgenic animals exhibit a developmental myopathy. When crossed with tamoxifen-inducible cre lines, DUX4-mediated pathology can be induced in adult animals. Thus, the appearance and progression of pathology can be controlled to provide readily screenable phenotypes useful for assessing therapeutic approaches targeting DUX4-fl mRNA and protein. Overall, the FLExDUX4 line of mice is quite versatile and will allow new investigations into mechanisms of DUX4-mediated pathophysiology as well as much-needed pre-clinical testing of DUX4-targeted FSHD interventions in vivo

    Mathematics and biology: a Kantian view on the history of pattern formation theory

    Get PDF
    Driesch’s statement, made around 1900, that the physics and chemistry of his day were unable to explain self-regulation during embryogenesis was correct and could be extended until the year 1972. The emergence of theories of self-organisation required progress in several areas including chemistry, physics, computing and cybernetics. Two parallel lines of development can be distinguished which both culminated in the early 1970s. Firstly, physicochemical theories of self-organisation arose from theoretical (Lotka 1910–1920) and experimental work (Bray 1920; Belousov 1951) on chemical oscillations. However, this research area gained broader acceptance only after thermodynamics was extended to systems far from equilibrium (1922–1967) and the mechanism of the prime example for a chemical oscillator, the Belousov–Zhabotinski reaction, was deciphered in the early 1970s. Secondly, biological theories of self-organisation were rooted in the intellectual environment of artificial intelligence and cybernetics. Turing wrote his The chemical basis of morphogenesis (1952) after working on the construction of one of the first electronic computers. Likewise, Gierer and Meinhardt’s theory of local activation and lateral inhibition (1972) was influenced by ideas from cybernetics. The Gierer–Meinhardt theory provided an explanation for the first time of both spontaneous formation of spatial order and of self-regulation that proved to be extremely successful in elucidating a wide range of patterning processes. With the advent of developmental genetics in the 1980s, detailed molecular and functional data became available for complex developmental processes, allowing a new generation of data-driven theoretical approaches. Three examples of such approaches will be discussed. The successes and limitations of mathematical pattern formation theory throughout its history suggest a picture of the organism, which has structural similarity to views of the organic world held by the philosopher Immanuel Kant at the end of the eighteenth century

    Algometry with a clothespin

    No full text
    • …
    corecore