380 research outputs found

    First Neutrino Observations from the Sudbury Neutrino Observatory

    Get PDF
    The first neutrino observations from the Sudbury Neutrino Observatory are presented from preliminary analyses. Based on energy, direction and location, the data in the region of interest appear to be dominated by 8B solar neutrinos, detected by the charged current reaction on deuterium and elastic scattering from electrons, with very little background. Measurements of radioactive backgrounds indicate that the measurement of all active neutrino types via the neutral current reaction on deuterium will be possible with small systematic uncertainties. Quantitative results for the fluxes observed with these reactions will be provided when further calibrations have been completed.Comment: Latex, 7 pages, 10 figures, Invited paper at Neutrino 2000 Conference, Sudbury, Canada, June 16-21, 2000 to be published in the Proceeding

    Constraints on Nucleon Decay via "Invisible" Modes from the Sudbury Neutrino Observatory

    Get PDF
    Data from the Sudbury Neutrino Observatory have been used to constrain the lifetime for nucleon decay to ``invisible'' modes, such as n -> 3 nu. The analysis was based on a search for gamma-rays from the de-excitation of the residual nucleus that would result from the disappearance of either a proton or neutron from O16. A limit of tau_inv > 2 x 10^{29} years is obtained at 90% confidence for either neutron or proton decay modes. This is about an order of magnitude more stringent than previous constraints on invisible proton decay modes and 400 times more stringent than similar neutron modes.Comment: Update includes missing efficiency factor (limits change by factor of 2) Submitted to Physical Review Letter

    Association Analysis of the FTO Gene with Obesity in Children of Caucasian and African Ancestry Reveals a Common Tagging SNP

    Get PDF
    Recently an association was demonstrated between the single nucleotide polymorphism (SNP), rs9939609, within the FTO locus and obesity as a consequence of a genome wide association (GWA) study of type 2 diabetes in adults. We examined the effects of two perfect surrogates for this SNP plus 11 other SNPs at this locus with respect to our childhood obesity cohort, consisting of both Caucasians and African Americans (AA). Utilizing data from our ongoing GWA study in our cohort of 418 Caucasian obese children (BMI≥95th percentile), 2,270 Caucasian controls (BMI<95th percentile), 578 AA obese children and 1,424 AA controls, we investigated the association of the previously reported variation at the FTO locus with the childhood form of this disease in both ethnicities. The minor allele frequencies (MAF) of rs8050136 and rs3751812 (perfect surrogates for rs9939609 i.e. both r2 = 1) in the Caucasian cases were 0.448 and 0.443 respectively while they were 0.391 and 0.386 in Caucasian controls respectively, yielding for both an odds ratio (OR) of 1.27 (95% CI 1.08–1.47; P = 0.0022). Furthermore, the MAFs of rs8050136 and rs3751812 in the AA cases were 0.449 and 0.115 respectively while they were 0.436 and 0.090 in AA controls respectively, yielding an OR of 1.05 (95% CI 0.91–1.21; P = 0.49) and of 1.31 (95% CI 1.050–1.643; P = 0.017) respectively. Investigating all 13 SNPs present on the Illumina HumanHap550 BeadChip in this region of linkage disequilibrium, rs3751812 was the only SNP conferring significant risk in AA. We have therefore replicated and refined the association in an AA cohort and distilled a tag-SNP, rs3751812, which captures the ancestral origin of the actual mutation. As such, variants in the FTO gene confer a similar magnitude of risk of obesity to children as to their adult counterparts and appear to have a global impact

    Moving toward a system genetics view of disease

    Get PDF
    Testing hundreds of thousands of DNA markers in human, mouse, and other species for association to complex traits like disease is now a reality. However, information on how variations in DNA impact complex physiologic processes flows through transcriptional and other molecular networks. In other words, DNA variations impact complex diseases through the perturbations they cause to transcriptional and other biological networks, and these molecular phenotypes are intermediate to clinically defined disease. Because it is also now possible to monitor transcript levels in a comprehensive fashion, integrating DNA variation, transcription, and phenotypic data has the potential to enhance identification of the associations between DNA variation and diseases like obesity and diabetes, as well as characterize those parts of the molecular networks that drive these diseases. Toward that end, we review methods for integrating expression quantitative trait loci (eQTLs), gene expression, and clinical data to infer causal relationships among gene expression traits and between expression and clinical traits. We further describe methods to integrate these data in a more comprehensive manner by constructing coexpression gene networks that leverage pairwise gene interaction data to represent more general relationships. To infer gene networks that capture causal information, we describe a Bayesian algorithm that further integrates eQTLs, expression, and clinical phenotype data to reconstruct whole-gene networks capable of representing causal relationships among genes and traits in the network. These emerging network approaches, aimed at processing high-dimensional biological data by integrating data from multiple sources, represent some of the first steps in statistical genetics to identify multiple genetic perturbations that alter the states of molecular networks and that in turn push systems into disease states. Evolving statistical procedures that operate on networks will be critical to extracting information related to complex phenotypes like disease, as research goes beyond a single-gene focus. The early successes achieved with the methods described herein suggest that these more integrative genomics approaches to dissecting disease traits will significantly enhance the identification of key drivers of disease beyond what could be achieved by genetic association studies alone

    Differential Allelic Expression in the Human Genome: A Robust Approach To Identify Genetic and Epigenetic Cis-Acting Mechanisms Regulating Gene Expression

    Get PDF
    The recent development of whole genome association studies has lead to the robust identification of several loci involved in different common human diseases. Interestingly, some of the strongest signals of association observed in these studies arise from non-coding regions located in very large introns or far away from any annotated genes, raising the possibility that these regions are involved in the etiology of the disease through some unidentified regulatory mechanisms. These findings highlight the importance of better understanding the mechanisms leading to inter-individual differences in gene expression in humans. Most of the existing approaches developed to identify common regulatory polymorphisms are based on linkage/association mapping of gene expression to genotypes. However, these methods have some limitations, notably their cost and the requirement of extensive genotyping information from all the individuals studied which limits their applications to a specific cohort or tissue. Here we describe a robust and high-throughput method to directly measure differences in allelic expression for a large number of genes using the Illumina Allele-Specific Expression BeadArray platform and quantitative sequencing of RT-PCR products. We show that this approach allows reliable identification of differences in the relative expression of the two alleles larger than 1.5-fold (i.e., deviations of the allelic ratio larger than 60∶40) and offers several advantages over the mapping of total gene expression, particularly for studying humans or outbred populations. Our analysis of more than 80 individuals for 2,968 SNPs located in 1,380 genes confirms that differential allelic expression is a widespread phenomenon affecting the expression of 20% of human genes and shows that our method successfully captures expression differences resulting from both genetic and epigenetic cis-acting mechanisms

    Genome-wide association of major depression: description of samples for the GAIN Major Depressive Disorder Study: NTR and NESDA biobank projects.

    Get PDF
    To identify the genomic regions that confer risk and protection for major depressive disorder (MDD) in humans, large-scale studies are needed. Such studies should collect multiple phenotypes, DNA, and ideally, biological material that allows gene expression analysis, transcriptomic, proteomic, and metabolomic studies. In this paper, we briefly review linkage studies of MDD and then describe the large-scale nationwide biological sample collection in Dutch twin families from the Netherlands Twin Register (NTR) and in participants in the Netherlands Study of Depression and Anxiety (NESDA). Within these studies, 1862 participants with a diagnosis of MDD and 1857 controls at low liability for MDD have been selected for genome-wide genotyping by the US Foundation for the National Institutes of Health Genetic Association Information Network. Stage 1 genome-wide association results are scheduled to be accessible before the end of 2007. Genome-wide association results are open-access and can be viewed at the dbGAP web portal (http://www.ncbi.nlm.nih.gov). Approved users can download the genotype and phenotype data, which have been made available as of 9 October 2007

    Rapid characterisation of vegetation structure to predict refugia and climate change impacts across a global biodiversity hotspot

    Get PDF
    Identification of refugia is an increasingly important adaptation strategy in conservation planning under rapid anthropogenic climate change. Granite outcrops (GOs) provide extraordinary diversity, including a wide range of taxa, vegetation types and habitats in the Southwest Australian Floristic Region (SWAFR). However, poor characterization of GOs limits the capacity of conservation planning for refugia under climate change. A novel means for the rapid identification of potential refugia is presented, based on the assessment of local-scale environment and vegetation structure in a wider region. This approach was tested on GOs across the SWAFR. Airborne discrete return Light Detection And Ranging (LiDAR) data and Red Green and Blue (RGB) imagery were acquired. Vertical vegetation profiles were used to derive 54 structural classes. Structural vegetation types were described in three areas for supervised classification of a further 13 GOs across the region.Habitat descriptions based on 494 vegetation plots on and around these GOs were used to quantify relationships between environmental variables, ground cover and canopy height. The vegetation surrounding GOs is strongly related to structural vegetation types (Kappa = 0.8) and to its spatial context. Water gaining sites around GOs are characterized by taller and denser vegetation in all areas. The strong relationship between rainfall, soil-depth, and vegetation structure (R2 of 0.8–0.9) allowed comparisons of vegetation structure between current and future climate. Significant shifts in vegetation structural types were predicted and mapped for future climates. Water gaining areas below granite outcrops were identified as important putative refugia. A reduction in rainfall may be offset by the occurrence of deeper soil elsewhere on the outcrop. However, climate change interactions with fire and water table declines may render our conclusions conservative. The LiDAR-based mapping approach presented enables the integration of site-based biotic assessment with structural vegetation types for the rapid delineation and prioritization of key refugia

    A systematic review on the effectiveness of physical and rehabilitation interventions for chronic non-specific low back pain

    Get PDF
    Low back pain (LBP) is a common and disabling disorder in western society. The management of LBP comprises a range of different intervention strategies including surgery, drug therapy, and non-medical interventions. The objective of the present study is to determine the effectiveness of physical and rehabilitation interventions (i.e. exercise therapy, back school, transcutaneous electrical nerve stimulation (TENS), low level laser therapy, education, massage, behavioural treatment, traction, multidisciplinary treatment, lumbar supports, and heat/cold therapy) for chronic LBP. The primary search was conducted in MEDLINE, EMBASE, CINAHL, CENTRAL, and PEDro up to 22 December 2008. Existing Cochrane reviews for the individual interventions were screened for studies fulfilling the inclusion criteria. The search strategy outlined by the Cochrane Back Review Groups (CBRG) was followed. The following were included for selection criteria: (1) randomized controlled trials, (2) adult (≥18 years) population with chronic (≥12 weeks) non-specific LBP, and (3) evaluation of at least one of the main clinically relevant outcome measures (pain, functional status, perceived recovery, or return to work). Two reviewers independently selected studies and extracted data on study characteristics, risk of bias, and outcomes at short, intermediate, and long-term follow-up. The GRADE approach was used to determine the quality of evidence. In total 83 randomized controlled trials met the inclusion criteria: exercise therapy (n = 37), back school (n = 5), TENS (n = 6), low level laser therapy (n = 3), behavioural treatment (n = 21), patient education (n = 1), traction (n = 1), and multidisciplinary treatment (n = 6). Compared to usual care, exercise therapy improved post-treatment pain intensity and disability, and long-term function. Behavioural treatment was found to be effective in reducing pain intensity at short-term follow-up compared to no treatment/waiting list controls. Finally, multidisciplinary treatment was found to reduce pain intensity and disability at short-term follow-up compared to no treatment/waiting list controls. Overall, the level of evidence was low. Evidence from randomized controlled trials demonstrates that there is low quality evidence for the effectiveness of exercise therapy compared to usual care, there is low evidence for the effectiveness of behavioural therapy compared to no treatment and there is moderate evidence for the effectiveness of a multidisciplinary treatment compared to no treatment and other active treatments at reducing pain at short-term in the treatment of chronic low back pain. Based on the heterogeneity of the populations, interventions, and comparison groups, we conclude that there are insufficient data to draw firm conclusion on the clinical effect of back schools, low-level laser therapy, patient education, massage, traction, superficial heat/cold, and lumbar supports for chronic LBP

    Genetic approaches to human renal agenesis/hypoplasia and dysplasia

    Get PDF
    Congenital abnormalities of the kidney and urinary tract are frequently observed in children and represent a significant cause of morbidity and mortality. These conditions are phenotypically variable, often affecting several segments of the urinary tract simultaneously, making clinical classification and diagnosis difficult. Renal agenesis/hypoplasia and dysplasia account for a significant portion of these anomalies, and a genetic contribution to its cause is being increasingly recognized. Nevertheless, overlap between diseases and challenges in clinical diagnosis complicate studies attempting to discover new genes underlying this anomaly. Most of the insights in kidney development derive from studies in mouse models or from rare, syndromic forms of human developmental disorders of the kidney and urinary tract. The genes implicated have been shown to regulate the reciprocal induction between the ureteric bud and the metanephric mesenchyme. Strategies to find genes causing renal agenesis/hypoplasia and dysplasia vary depending on the characteristics of the study population available. The approaches range from candidate gene association or resequencing studies to traditional linkage studies, using outbred pedigrees or genetic isolates, to search for structural variation in the genome. Each of these strategies has advantages and pitfalls and some have led to significant discoveries in human disease. However, renal agenesis/hypoplasia and dysplasia still represents a challenge, both for the clinicians who attempt a precise diagnosis and for the geneticist who tries to unravel the genetic basis, and a better classification requires molecular definition to be retrospectively improved. The goal appears to be feasible with the large multicentric collaborative groups that share the same objectives and resources
    corecore