96 research outputs found
Breaking Up the C Complex Spliceosome Shows Stable Association of Proteins with the Lariat Intron Intermediate
Spliceosome assembly requires several structural rearrangements to position the components of the catalytic core. Many of these rearrangements involve successive strengthening and weakening of different RNA∶RNA and RNA∶proteins interactions within the complex. To gain insight into the organization of the catalytic core of the spliceosome arrested between the two steps of splicing chemistry (C complex), we investigated the effects of exposing C complex to low concentrations of urea. We find that in the presence of 3M urea C complex separates into at least three sub-complexes. One sub-complex contains the 5′exon, another contains the intron-lariat intermediate, and U2/U5/U6 snRNAs likely comprise a third sub-complex. We purified the intron-lariat intermediate sub-complex and identified several proteins, including U2 snRNP and PRP19 complex (NTC) components. The data from our study indicate that U2 snRNP proteins in C complex are more stably associated with the lariat-intron intermediate than the U2 snRNA. The results also suggest a set of candidate proteins that hold the lariat-intron intermediate together in C complex. This information is critical for further interpreting the complex architecture of the mammalian spliceosome
A Modified Coupled Enzyme Method for O-linked GlcNAc Transferase Activity Assay
In order to determine the activity of O-linked GlcNAc transferase (OGT), a modified coupled enzyme method was proposed. This method was based on the measurement of uridine 5'-(trihydrogen diphosphate) (UDP), a product generated in transglycosylation reaction. In the assay, UDP was coupled to the conversion of phosphoenolpyruvate to pyruvate using pyruvate kinase. Using a commercial pyruvate assay kit, the pyruvate was converted to a red terminal product, which could be photometrically measured at 570 nm or fluorometrically measured at 587 nm (Em = 535 nm) on a microplate reader. Kinetic study of a truncated recombinant mOGT and quantitative analysis of OGT in two biological samples indicated that this method was practical and competitive for quantitative analysis of OGT
Human antibodies targeting cell surface antigens overexpressed by the hormone refractory metastatic prostate cancer cells: ICAM-1 is a tumor antigen that mediates prostate cancer cell invasion
Transition from hormone-sensitive to hormone-refractory metastatic tumor types poses a major challenge for prostate cancer treatment. Tumor antigens that are differentially expressed during this transition are likely to play important roles in imparting prostate cancer cells with the ability to grow in a hormone-deprived environment and to metastasize to distal sites such as the bone and thus, are likely targets for therapeutic intervention. To identify those molecules and particularly cell surface antigens that accompany this transition, we studied the changes in cell surface antigenic profiles between a hormone-sensitive prostate cancer line LNCaP and its hormone-refractory derivative C4-2B, using an antibody library-based affinity proteomic approach. We selected a naïve phage antibody display library to identify human single-chain antibodies that bind specifically to C4-2B but not LNCaP. Using mass spectrometry, we identified one of the antibody-targeted antigens as the ICAM-1/CD54/human rhinovirus receptor. Recombinant IgG1 derived from this single-chain antibody binds to a neutralizing epitope of ICAM-1 and blocks C4-2B cell invasion through extracellular matrix in vitro. ICAM-1 is thus differentially expressed during the transition of the hormone-sensitive prostate cancer cell line LNCaP to its hormone-refractory derivative C4-2B, plays an important role in imparting the C4-2B line with the ability to invade, and may therefore be a target for therapeutic intervention
Current challenges in software solutions for mass spectrometry-based quantitative proteomics
This work was in part supported by the PRIME-XS project, grant agreement number 262067, funded by the European Union seventh Framework Programme; The Netherlands Proteomics Centre, embedded in The Netherlands Genomics Initiative; The Netherlands Bioinformatics Centre; and the Centre for Biomedical Genetics (to S.C., B.B. and A.J.R.H); by NIH grants NCRR RR001614 and RR019934 (to the UCSF Mass Spectrometry Facility, director: A.L. Burlingame, P.B.); and by grants from the MRC, CR-UK, BBSRC and Barts and the London Charity (to P.C.
Proteomic Identification of IPSE/alpha-1 as a Major Hepatotoxin Secreted by Schistosoma mansoni Eggs
The flatworm disease, schistosomiasis, is a major public health problem in sub-Saharan Africa, South America and East Asia. A hallmark of infection with Schistosoma mansoni is the immune response to parasite eggs trapped in the liver and other organs. This response involves an infiltration of cells that surround the parasite egg forming a “granuloma.” In mice deprived of T-cells, this granulomatous response is lacking, and toxic products released by eggs quickly cause liver damage and death. Thus the granulomata protect the host from toxic egg products. Only one hepatotoxic molecule, omega-1, has been described to date. We set out to identify other S. mansoni egg hepatotoxins using liver cells grown in culture. We first showed that live eggs, their secretions, and pure omega-1 are toxic. Using a physical separation technique to prepare fractions from whole egg secretions, we identified the presence of IPSE/alpha-1, a protein that is known to strongly influence the immune system. We showed that IPSE/alpha-1 is also hepatotoxic, and that toxicity of both omega-1 and IPSE/alpha-1 can be prevented by first mixing the proteins with specific neutralizing antibodies. Both proteins constitute the majority of hepatotoxicity released by eggs
Extensive Crosstalk between O-GlcNAcylation and Phosphorylation Regulates Akt Signaling
O-linked N-acetylglucosamine glycosylations (O-GlcNAc) and O-linked phosphorylations (O-phosphate), as two important types of post-translational modifications, often occur on the same protein and bear a reciprocal relationship. In addition to the well documented phosphorylations that control Akt activity, Akt also undergoes O-GlcNAcylation, but the interplay between these two modifications and the biological significance remain unclear, largely due to the technique challenges. Here, we applied a two-step analytic approach composed of the O-GlcNAc immunoenrichment and subsequent O-phosphate immunodetection. Such an easy method enabled us to visualize endogenous glycosylated and phosphorylated Akt subpopulations in parallel and observed the inhibitory effect of Akt O-GlcNAcylations on its phosphorylation. Further studies utilizing mass spectrometry and mutagenesis approaches showed that O-GlcNAcylations at Thr 305 and Thr 312 inhibited Akt phosphorylation at Thr 308 via disrupting the interaction between Akt and PDK1. The impaired Akt activation in turn resulted in the compromised biological functions of Akt, as evidenced by suppressed cell proliferation and migration capabilities. Together, this study revealed an extensive crosstalk between O-GlcNAcylations and phosphorylations of Akt and demonstrated O-GlcNAcylation as a new regulatory modification for Akt signaling
Phase I trial of intravesical Suramin in recurrent superficial transitional cell bladder carcinoma
Suramin is an antitrypanosomal agent with antineoplastic activity, but with serious systemic side effects. We administered Suramin intravesically to determine a concentration with low toxicity but with evidence of a pharmacodynamic effect, to recommend a dose level for phase II trials. This was an open-labelled, nonrandomised dose-escalation phase I study. In all, 12 patients with a history of recurrent superficial bladder cancer were grouped into four dose levels (10–150 mg ml−1 in 60 ml saline). Six catheter instillations at weekly intervals were used. Cystoscopy and biopsy were performed before and 3 months after the start of treatment. Suramin was assayed using high-performance liquid chromatography, vascular endothelial growth factor (VEGF) using ELISA (enzyme-linked immunosorbent assay), and urinary protein profile using surface-enhanced laser desorption ionisation mass spectroscopy (SELDI). Minimal systemic absorption of Suramin was found at the highest dose of 150 mg ml−1. Urinary VEGF was affected by Suramin at doses above 50 mg ml−1, corresponding to the estimated threshold of saturation of Suramin binding to urine albumin. SELDI showed a specific disappearance of urinary protein peaks during treatment. Intravesical Suramin shows lack of toxicity and low systemic absorption. The results of this phase I trial support expanded clinical trials of efficacy at a dose of 100 mg ml−1 intravesically
Proteomic Analysis of Human Skin Treated with Larval Schistosome Peptidases Reveals Distinct Invasion Strategies among Species of Blood Flukes
Schistosome parasites are a major cause of disease in the developing world, but the mechanism by which these parasites first infect their host has been studied at the molecular level only for S. mansoni. In this paper, we have mined recent genome annotations of S. mansoni and S. japonicum, a zoonotic schistosome species, to identify differential expansion of peptidase gene families that may be involved in parasite invasion and subsequent migration through skin. Having identified a serine peptidase gene family in S. mansoni and a cysteine peptidase gene family in S. japonicum, we then used a comparative proteomic approach to identify potential substrates of representative members of both classes of enzymes from S. mansoni in human skin. The results of this study suggest that while these species evolved to use different classes of peptidases in host invasion, both are capable of cleaving components of the epidermis and dermal extracellular matrix, as well as proteins involved in the host immune response against the migrating parasite
Identification of Roles for Peptide: N-Glycanase and Endo-β-N-Acetylglucosaminidase (Engase1p) during Protein N-Glycosylation in Human HepG2 Cells
BACKGROUND: During mammalian protein N-glycosylation, 20% of all dolichol-linked oligosaccharides (LLO) appear as free oligosaccharides (fOS) bearing the di-N-acetylchitobiose (fOSGN2), or a single N-acetylglucosamine (fOSGN), moiety at their reducing termini. After sequential trimming by cytosolic endo beta-N-acetylglucosaminidase (ENGase) and Man2c1 mannosidase, cytosolic fOS are transported into lysosomes. Why mammalian cells generate such large quantities of fOS remains unexplored, but fOSGN2 could be liberated from LLO by oligosaccharyltransferase, or from glycoproteins by NGLY1-encoded Peptide-N-Glycanase (PNGase). Also, in addition to converting fOSGN2 to fOSGN, the ENGASE-encoded cytosolic ENGase of poorly defined function could potentially deglycosylate glycoproteins. Here, the roles of Ngly1p and Engase1p during fOS metabolism were investigated in HepG2 cells. METHODS/PRINCIPAL FINDINGS: During metabolic radiolabeling and chase incubations, RNAi-mediated Engase1p down regulation delays fOSGN2-to-fOSGN conversion, and it is shown that Engase1p and Man2c1p are necessary for efficient clearance of cytosolic fOS into lysosomes. Saccharomyces cerevisiae does not possess ENGase activity and expression of human Engase1p in the png1Delta deletion mutant, in which fOS are reduced by over 98%, partially restored fOS generation. In metabolically radiolabeled HepG2 cells evidence was obtained for a small but significant Engase1p-mediated generation of fOS in 1 h chase but not 30 min pulse incubations. Ngly1p down regulation revealed an Ngly1p-independent fOSGN2 pool comprising mainly Man(8)GlcNAc(2), corresponding to approximately 70% of total fOS, and an Ngly1p-dependent fOSGN2 pool enriched in Glc(1)Man(9)GlcNAc(2) and Man(9)GlcNAc(2) that corresponds to approximately 30% of total fOS. CONCLUSIONS/SIGNIFICANCE: As the generation of the bulk of fOS is unaffected by co-down regulation of Ngly1p and Engase1p, alternative quantitatively important mechanisms must underlie the liberation of these fOS from either LLO or glycoproteins during protein N-glycosylation. The fully mannosylated structures that occur in the Ngly1p-dependent fOSGN2 pool indicate an ERAD process that does not require N-glycan trimming
Minería de datos para el descubrimiento de patrones en enfermedades respiratorias en Bogotá, Colombia
Trabajo de InvestigaciónEl presente proyecto se basa en la aplicación de minería de datos mediante el algoritmo de clustering K- means que permita la generación de un modelo descriptivo con el análisis de los datos y con el objetivo de identificar posibles comportamientos en enfermedades respiratorias en la ciudad de Bogotá.
El conjunto de clústeres generados por la herramienta RapidMiner es la
recopilación de datos de un periodo de cinco años de 2012 a 2016, en donde se contemplan el número de casos asociados a 184 diagnósticos de enfermedades respiratorias y la edad de los pacientes corresponde de 0 a 5 años.Trabajo de Investigación1. GENERALIDADES
2. OBJETIVOS
3. JUSTIFICACIÓN
4. DELIMITACIÓN
5. MARCO REFERENCIAL
6. METODOLOGÍA
7. FUENTES DE EXTRACCIÓN Y SUS VARIABLES
8. DISEÑO
9. SELECCIÓN DE ALGORITMOS DE CLUSTERING
10. RECONOCER PATRONES A PARTIR DE LA INFORMACIÓN RECOPILADA
11. CONCLUSIONES
12. TRABAJOS FUTUROS 13. REFERENCIAS BIBLIOGRÁFICAS
14. ANEXOSPregradoIngeniero de Sistema
- …