1,532 research outputs found
Cancer mortality in the United Kingdom: projections to the year 2025
The purpose of this study was to project mortality rates in the United Kingdom for the period 2006–2025 for 21 major cancers on the basis of the observed trends in mortality rates during 1971–2005, and to estimate the implication in terms of expected deaths. Age-period-cohort models were applied to official statistics. The projected decrease in age-standardised mortality rates for all cancers from 2003 to 2023 was 17% in men and 16% in women. Future mortality rates were projected to decline for most cancer sites. In men, there were small projected increases in mortality rates from cancers of the oral cavity, oesophagus and melanoma, with a larger projected increase (14% over 20 years) in mortality of liver cancer. In women, the only projected increase (18%) was for corpus uteri. The numbers of deaths will increase for most cancers, with a 30% increase in all cancers projected for men and a 12% increase projected for women. Mortality rates from cancer as a whole have been falling in the United Kingdom since 1990, and this decline was projected to continue into the future as well as the declining rates in both sexes for most cancers. Actual numbers of deaths will increase for most cancers
Continuous heating of a giant X-ray flare on Algol
Giant flares can release large amounts of energy within a few days: X-ray
emission alone can be up to ten percent of the star's bolometric luminosity.
These flares exceed the luminosities of the largest solar flares by many orders
of magnitude, which suggests that the underlying physical mechanisms supplying
the energy are different from those on the Sun. Magnetic coupling between the
components in a binary system or between a young star and an accretion disk has
been proposed as a prerequisite for giant flares. Here we report X-ray
observations of a giant flare on Algol B, a giant star in an eclipsing binary
system. We observed a total X-ray eclipse of the flare, which demonstrates that
the plasma was confined to Algol B, and reached a maximum height of 0.6 stellar
radii above its surface. The flare occurred around the south pole of Algol B,
and energy must have been released continously throughout its life. We conclude
that a specific extrastellar environment is not required for the presence of a
flare, and that the processes at work are therefore similar to those on the
Sun.Comment: Nature, Sept. 2 199
Depression in Visual Impairment Trial (DEPVIT): A Randomized Clinical Trial of Depression Treatments in People With Low Vision
Supported by Guide Dogs (Grant OR-2009 07b)
Influences of Excluded Volume of Molecules on Signaling Processes on Biomembrane
We investigate the influences of the excluded volume of molecules on
biochemical reaction processes on 2-dimensional surfaces using a model of
signal transduction processes on biomembranes. We perform simulations of the
2-dimensional cell-based model, which describes the reactions and diffusion of
the receptors, signaling proteins, target proteins, and crowders on the cell
membrane. The signaling proteins are activated by receptors, and these
activated signaling proteins activate target proteins that bind autonomously
from the cytoplasm to the membrane, and unbind from the membrane if activated.
If the target proteins bind frequently, the volume fraction of molecules on the
membrane becomes so large that the excluded volume of the molecules for the
reaction and diffusion dynamics cannot be negligible. We find that such
excluded volume effects of the molecules induce non-trivial variations of the
signal flow, defined as the activation frequency of target proteins, as
follows. With an increase in the binding rate of target proteins, the signal
flow varies by i) monotonically increasing; ii) increasing then decreasing in a
bell-shaped curve; or iii) increasing, decreasing, then increasing in an
S-shaped curve. We further demonstrate that the excluded volume of molecules
influences the hierarchical molecular distributions throughout the reaction
processes. In particular, when the system exhibits a large signal flow, the
signaling proteins tend to surround the receptors to form receptor-signaling
protein clusters, and the target proteins tend to become distributed around
such clusters. To explain these phenomena, we analyze the stochastic model of
the local motions of molecules around the receptor.Comment: 31 pages, 10 figure
Overfeeding, Autonomic Regulation and Metabolic Consequences
The autonomic nervous system plays an important role in the regulation of body processes in health and disease. Overfeeding and obesity (a disproportional increase of the fat mass of the body) are often accompanied by alterations in both sympathetic and parasympathetic autonomic functions. The overfeeding-induced changes in autonomic outflow occur with typical symptoms such as adiposity and hyperinsulinemia. There might be a causal relationship between autonomic disturbances and the consequences of overfeeding and obesity. Therefore studies were designed to investigate autonomic functioning in experimentally and genetically hyperphagic rats. Special emphasis was given to the processes that are involved in the regulation of peripheral energy substrate homeostasis. The data revealed that overfeeding is accompanied by increased parasympathetic outflow. Typical indices of vagal activity (such as the cephalic insulin release during food ingestion) were increased in all our rat models for hyperphagia. Overfeeding was also accompanied by increased sympathetic tone, reflected by enhanced baseline plasma norepinephrine (NE) levels in both VMH-lesioned animals and rats rendered obese by hyperalimentation. Plasma levels of NE during exercise were, however, reduced in these two groups of animals. This diminished increase in the exercise-induced NE outflow could be normalized by prior food deprivation. It was concluded from these experiments that overfeeding is associated with increased parasympathetic and sympathetic tone. In models for hyperphagia that display a continuously elevated nutrient intake such as the VMH-lesioned and the overfed rat, this increased sympathetic tone was accompanied by a diminished NE response to exercise. This attenuated outflow of NE was directly related to the size of the fat reserves, indicating that the feedback mechanism from the periphery to the central nervous system is altered in the overfed state.
MIA-Prognosis: A Deep Learning Framework to Predict Therapy Response
Predicting clinical outcome is remarkably important but challenging. Research
efforts have been paid on seeking significant biomarkers associated with the
therapy response or/and patient survival. However, these biomarkers are
generally costly and invasive, and possibly dissatifactory for novel therapy.
On the other hand, multi-modal, heterogeneous, unaligned temporal data is
continuously generated in clinical practice. This paper aims at a unified deep
learning approach to predict patient prognosis and therapy response, with
easily accessible data, e.g., radiographics, laboratory and clinical
information. Prior arts focus on modeling single data modality, or ignore the
temporal changes. Importantly, the clinical time series is asynchronous in
practice, i.e., recorded with irregular intervals. In this study, we formalize
the prognosis modeling as a multi-modal asynchronous time series classification
task, and propose a MIA-Prognosis framework with Measurement, Intervention and
Assessment (MIA) information to predict therapy response, where a Simple
Temporal Attention (SimTA) module is developed to process the asynchronous time
series. Experiments on synthetic dataset validate the superiory of SimTA over
standard RNN-based approaches. Furthermore, we experiment the proposed method
on an in-house, retrospective dataset of real-world non-small cell lung cancer
patients under anti-PD-1 immunotherapy. The proposed method achieves promising
performance on predicting the immunotherapy response. Notably, our predictive
model could further stratify low-risk and high-risk patients in terms of
long-term survival.Comment: MICCAI 2020 (Early Accepted; Student Travel Award
Mass and Angular Momentum in General Relativity
We present an introduction to mass and angular momentum in General
Relativity. After briefly reviewing energy-momentum for matter fields, first in
the flat Minkowski case (Special Relativity) and then in curved spacetimes with
or without symmetries, we focus on the discussion of energy-momentum for the
gravitational field. We illustrate the difficulties rooted in the Equivalence
Principle for defining a local energy-momentum density for the gravitational
field. This leads to the understanding of gravitational energy-momentum and
angular momentum as non-local observables that make sense, at best, for
extended domains of spacetime. After introducing Komar quantities associated
with spacetime symmetries, it is shown how total energy-momentum can be
unambiguously defined for isolated systems, providing fundamental tests for the
internal consistency of General Relativity as well as setting the conceptual
basis for the understanding of energy loss by gravitational radiation. Finally,
several attempts to formulate quasi-local notions of mass and angular momentum
associated with extended but finite spacetime domains are presented, together
with some illustrations of the relations between total and quasi-local
quantities in the particular context of black hole spacetimes. This article is
not intended to be a rigorous and exhaustive review of the subject, but rather
an invitation to the topic for non-experts. In this sense we follow essentially
the expositions in Szabados 2004, Gourgoulhon 2007, Poisson 2004 and Wald 84,
and refer the reader interested in further developments to the existing
literature, in particular to the excellent and comprehensive review by Szabados
(2004).Comment: 41 pages. Notes based on the lecture given at the C.N.R.S. "School on
Mass" (June 2008) in Orleans, France. To appear as proceedings in the book
"Mass and Motion in General Relativity", eds. L. Blanchet, A. Spallicci and
B. Whiting. Some comments and references added
The analysis of European lacquer : optimization of thermochemolysis temperature of natural resins
In order to optimize chromatographic analysis of European lacquer, thermochemolysis temperature was evaluated for the analysis of natural resins. Five main ingredients of lacquer were studied: sandarac, mastic, colophony, Manila copal and Congo copal. For each, five temperature programs were tested: four fixed temperatures (350, 480, 550, 650 degrees C) and one ultrafast thermal desorption (UFD), in which the temperature rises from 350 to 660 degrees C in 1 min. In total, the integrated signals of 27 molecules, partially characterizing the five resins, were monitored to compare the different methods. A compromise between detection of compounds released at low temperatures and compounds formed at high temperatures was searched. 650 degrees C is too high for both groups, 350 degrees C is best for the first, and 550 degrees C for the second. Fixed temperatures of 480 degrees C or UFD proved to be a consensus in order to detect most marker molecules. UFD was slightly better for the molecules released at low temperatures, while 480 degrees C showed best compounds formed at high temperatures
Evidence for Pervasive Adaptive Protein Evolution in Wild Mice
The relative contributions of neutral and adaptive substitutions to molecular evolution has been one of the most controversial issues in evolutionary biology for more than 40 years. The analysis of within-species nucleotide polymorphism and between-species divergence data supports a widespread role for adaptive protein evolution in certain taxa. For example, estimates of the proportion of adaptive amino acid substitutions (alpha) are 50% or more in enteric bacteria and Drosophila. In contrast, recent estimates of alpha for hominids have been at most 13%. Here, we estimate alpha for protein sequences of murid rodents based on nucleotide polymorphism data from multiple genes in a population of the house mouse subspecies Mus musculus castaneus, which inhabits the ancestral range of the Mus species complex and nucleotide divergence between M. m. castaneus and M. famulus or the rat. We estimate that 57% of amino acid substitutions in murids have been driven by positive selection. Hominids, therefore, are exceptional in having low apparent levels of adaptive protein evolution. The high frequency of adaptive amino acid substitutions in wild mice is consistent with their large effective population size, leading to effective natural selection at the molecular level. Effective natural selection also manifests itself as a paucity of effectively neutral nonsynonymous mutations in M. m. castaneus compared to humans
- …