246 research outputs found

    Dynamic Identification as a Tool to Constrain Numerical Models for Structural Analysis of Historical Buildings

    Get PDF
    Operational modal analysis (OMA), also known as output-only or ambient vibration test (AVT), has become in last decades a powerful approach for a wide range of applications in the field of civil engineering. When historical structures are investigated this approach is particularly appealing avoiding shaking the structure artificially. This paper discusses the assessment of the dynamic behavior of the Baptistery of San Giovanni in Firenze (Italy). Based on experimental results obtained through a temporary network of seismic sensors, the enhanced frequency domain decomposition (EFDD) technique is employed to evaluate frequencies and mode shapes. These modal parameters are subsequently used to calibrate a 3D finite element (FE) model of the Baptistery. Genetic algorithm (GA) technique is employed for calibration, thus allowing to obtain an accurate and robust numerical model. To verify the effects introduced by the number of identified modal parameters on the model updating procedure several analyses are in addition performed. This paper, providing an illustrative case study in the field of health monitoring of monumental structures, confirms that the OMA technique is able to derive effective information on the dynamic behavior of historical buildings, which in turn is useful to tune reliable and robust numerical models to be employed for structural analysis

    Passive vs. active degassing modes at an open-vent volcano (Stromboli, Italy)

    Get PDF
    We report here on a UV-camera based field experiment performed on Stromboli volcano during 7 days in 2010 and 2011, aimed at obtaining the very first simultaneous assessment of all the different forms (passive and active) of SO2 release from an open-vent volcano. Using the unprecedented spatial and temporal resolution of the UV camera, we obtained a 0.8 Hz record of the total SO2 flux from Stromboli over a timeframe of 14 h, which ranged between 0.4 and 1.9 kg s 1 around a mean value of 0.7 kg s 1 and we concurrently derived SO2 masses for more than 130 Strombolian explosions and 50 gas puffs. From this, we show erupted SO2 masses have a variability of up to one order of magnitude, and range between 2 and 55 kg (average 20 kg), corresponding to a time integrated flux of 0.0570.01 kg s 1. Our experimental constraints on individual gas puff mass (0.03–0.42 kg of SO2, averaging 0.19 kg) are the first of their kind, equating to an emission rate ranging from 0.02 to 0.27 kg s 1. On this basis, we conclude that puffing is two times more efficient than Strombolian explosions in the magmatic degassing process, and that active degassing (explosionsþpuffing) accounts for 23% (ranging from 10% to 45%) of the volcano’s total SO2 flux, e.g., passive degassing between the explosions contributes the majority ( 77%) of the released gas. We furthermore integrate our UV camera gas data for the explosions and puffs, with independent geophysical data (infrared radiometer data and very long period seismicity), to offer key and novel insights into the degassing dynamics within the shallow conduit systems of this open-vent volcano
    • …
    corecore