14 research outputs found

    Apoplastic And Intracellular Plant Sugars Regulate Developmental Transitions In Witches' Broom Disease Of Cacao

    No full text
    Witches' broom disease (WBD) of cacao differs from other typical hemibiotrophic plant diseases by its unusually long biotrophic phase. Plant carbon sources have been proposed to regulate WBD developmental transitions; however, nothing is known about their availability at the plant-fungus interface, the apoplastic fluid of cacao. Data are provided supporting a role for the dynamics of soluble carbon in the apoplastic fluid in prompting the end of the biotrophic phase of infection. Carbon depletion and the consequent fungal sensing of starvation were identified as key signalling factors at the apoplast. MpNEP2, a fungal effector of host necrosis, was found to be up-regulated in an autophagic-like response to carbon starvation in vitro. In addition, the in vivo artificial manipulation of carbon availability in the apoplastic fluid considerably modulated both its expression and plant necrosis rate. Strikingly, infected cacao tissues accumulated intracellular hexoses, and showed stunted photosynthesis and the up-regulation of senescence markers immediately prior to the transition to the necrotrophic phase. These opposite findings of carbon depletion and accumulation in different host cell compartments are discussed within the frame of WBD development. A model is suggested to explain phase transition as a synergic outcome of fungal-related factors released upon sensing of extracellular carbon starvation, and an early senescence of infected tissues probably triggered by intracellular sugar accumulation.66513251337Alvim, F.C., Mattos, E.M., Pirovani, C.P., Gramacho, K., Pungartnik, C., Brendel, M., Cascardo, J.C., Vincentz, M., Carbon source-induced changes in the physiology of the cacao pathogen Moniliophthora perniciosa (Basidiomycetes) affect mycelial morphology and secretion of necrosis-inducing proteins (2009) Genetics and Molecular Research, 8, pp. 1035-1050Berger, S., Sinha, A.K., Roitsch, T., Plant physiology meets phytopathology: Plant primary metabolism and plant-pathogen interactions (2007) Journal of Experimental Botany, 58, pp. 4019-4026Bolton, M.D., Bphj, T., The complexity of nitrogen metabolism and nitrogen-regulated gene expression in plant pathogenic fungi (2008) Physiological and Molecular Plant Pathology, 72, pp. 104-110Breeze, E., Harrison, E., McHattie, S., High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation (2011) The Plant Cell, 23, pp. 873-894Brouwer, B., Ziolkowska, A., Bagard, M., Keech, O., Gardeström, P., The impact of light intensity on shade-induced leaf senescence (2012) Plant, Cell and Environment, 35, pp. 1084-1098Buchanan-Wollaston, V., Page, T., Harrison, E., Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvationinduced senescence in Arabidopsis (2005) The Plant Journal, 42, pp. 567-585Calle, H., Cook, A., Fernando, S., Histology of witches'-broom caused in cacao by Crinipellis perniciosa (1982) Phytopathology, 72, pp. 1479-1481Chen, X., Stone, M., Schlagnhaufer, C., Romaine, C.P., A fruiting body tissue method for efficient Agrobacterium-mediated transformation of Agaricus bisporus (2000) Applied and Environmental Microbiology, 66, pp. 4510-4513Coleman, M., Henricot, B., Arnau, J., Oliver, R.P., Starvationinduced genes of the tomato pathogen Cladosporium fulvum are also induced during growth in planta (1997) Molecular Plant-Microbe Interactions, 10, pp. 1106-1109Contento, A.L., Kim, S., Bassham, D.C., Transcriptome profiling of the response of Arabidopsis suspension culture cells to Suc starvation (2004) Plant Physiology, 135, pp. 2330-2347Cutler, N.S., Pan, X., Heitman, J., Cardenas, M.E., The TOR signal transduction cascade controls cellular differentiation in response to nutrients (2001) Molecular Biology of the Cell, 12, pp. 4103-4113Da Hora Junior, B.T., Poloni Jde, F., Lopes, M.A., Transcriptomics and systems biology analysis in identification of specific pathways involved in cacao resistance and susceptibility to witches' broom disease (2012) Molecular Biosystems, 8, pp. 1507-1519Divon, H.H., Fluhr, R., Nutrition acquisition strategies during fungal infection of plants (2007) FEMS Microbiol Letters, 266, pp. 65-74Doorn, W.G.V., Is petal senescence due to sugar starvation (2004) Plant Physiology, 134, pp. 35-42Evans, H.C., Pleomorphism in Crinipellis perniciosa. Causal agent of witches' broom disease of cocoa (1980) Transactions of the British Mycological Society, 74, pp. 515-523Evans, H.C., Bastos, C.N., Basidiospore germination as a means of assessing resistance to Crinipellis perniciosa (witches' broom disease) in cocoa cultivars (1980) Transactions of the British Mycological Society, 74, pp. 525-536Fernandez, J., Wilson, R.A., Why no feeding frenzy? Mechanisms of nutrient acquisition and utilization during infection by the rice blast fungus Magnaporthe oryzae (2012) Molecular Plant-Microbe Interactions, 25, pp. 1286-1293Fernandez, J., Wright, J.D., Hartline, D., Quispe, C.F., Madayiputhiya, N., Wilson, R.A., Principles of carbon catabolite repression in the rice blast fungus: Tps1, Nmr1-3, and a MATE-family pump regulate glucose metabolism during infection (2012) PLoS Genetics, 8, p. e1002673Frias, G., Purdy, L., Schmidt, R., Infection biology of Crinipellis perniciosa on vegetative flushes of cacao (1991) Plant Disease, 75, pp. 552-556Frias, G., Purdy, L., Schmidt, R., An inoculation method for evaluating resistance of cacao to Crinipellis perniciosa (1995) Plant Disease, 79, pp. 787-791Fujiki, Y., Ito, M., Nishida, I., Watanabe, A., Multiple signaling pathways in gene expression during sugar starvation. Pharmacological analysis of din gene expression in suspension-cultured cells of Arabidopsis (2000) Plant Physiology, 124, pp. 1139-1148Garcia, O., Macedo, J.A., Tiburcio, R., Characterization of necrosis and ethylene-inducing proteins (NEP) in the basidiomycete Moniliophthora perniciosa, the causal agent of witches' broom in Theobroma cacao (2007) Mycological Research, 111, pp. 443-455Gepstein, S., Leaf senescence-not just a 'wear and tear' phenomenon (2004) Genome Biology, 5, p. 212Greathouse, D., Laetsch, W., Phinney, B., The shoot-growth rhythm of a tropical tree, Theobroma cacao (1971) American Journal of Botany, 58, pp. 281-286Guo, Y., Cai, Z., Gan, S., Transcriptome of Arabidopsis leaf senescence (2004) Plant, Cell and Environment, 27, pp. 521-549Joosten, M.H.A.J., Hendrickx, L.J.M., Wit, P.J.G.M., Carbohydrate composition of apoplastic fluids isolated from tomato leaves inoculated with virulent or avirulent races of Cladosporium fulvum (syn (1990) Fulvia Fulva). Netherlands Journal of Plant Pathology, 96, pp. 103-112Kershaw, M.J., Talbot, N.J., Genome-wide functional analysis reveals that infection-associated fungal autophagy is necessary for rice blast disease (2009) Proceedings of the National Academy of Sciences, USA, 106, pp. 15967-15972Kilaru, A., Bailey, B.A., Hasenstein, K.H., Moniliophthora perniciosa produces hormones and alters endogenous auxin and salicylic acid in infected cocoa leaves (2007) FEMS Microbiol Letters, 274, pp. 238-244Kocal, N., Sonnewald, U., Sonnewald, S., Cell wall-bound invertase limits sucrose export and is involved in symptom development and inhibition of photosynthesis during compatible interaction between tomato and Xanthomonas campestris pv vesicatoria (2008) Plant Physiology, 148, pp. 1523-1536Lim, P.O., Kim, H.J., Nam, H.G., Leaf senescence (2007) Annual Review of Plant Biology, 58, pp. 115-136Lima, J.O., Dos Santos, J.K., Pereira, J.F., De Resende, M.L., De Araujo, E.F., De Queiroz, M.V., Development of a transformation system for Crinipellis perniciosa, the causal agent of witches' broom in cocoa plants (2003) Current Genetics, 42, pp. 236-240Lin, Y.H., Ferguson, B.J., Kereszt, A., Gresshoff, P.M., Suppression of hypernodulation in soybean by a leaf-extracted, NARK-and Nod factor-dependent, low molecular mass fraction (2010) New Phytologist, 185, pp. 1074-1086Lin, Y.H., Lin, M.H., Gresshoff, P.M., Ferguson, B.J., An efficient petiole-feeding bioassay for introducing aqueous solutions into dicotyledonous plants (2011) Nature Protocols, 6, pp. 36-45Long, S.P., Bernacchi, C.J., Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error (2003) Journal of Experimental Botany, 54, pp. 2393-2401Mason, M.G., Ross, J.J., Babst, B.A., Wienclaw, B.N., Beveridge, C.A., Sugar demand, not auxin, is the initial regulator of apical dominance (2014) Proceedings of the National Academy of Sciences, USA, 111, pp. 6092-6097Meinhardt, L.W., Bellato Cde, M., Rincones, J., Azevedo, R.A., Cascardo, J.C., Pereira, G.A., In vitro production of biotrophic-like cultures of Crinipellis perniciosa, the causal agent of witches' broom disease of Theobroma cacao (2006) Current Microbiology, 52, pp. 191-196Meinhardt, L.W., Rincones, J., Bailey, B.A., Aime, M.C., Griffith, G.W., Zhang, D., Pereira, G.A., Moniliophthora perniciosa, the causal agent of witches' broom disease of cacao: What's new from this old foe (2008) Molecular Plant Pathology, 9, pp. 577-588Melnick, R.L., Marelli, J.-P., Sicher, R.C., Strem, M.D., Bailey, B.A., The interaction of Theobroma cacao and Moniliophthora perniciosa. The causal agent of witches' broom disease, during parthenocarpy (2012) Tree Genetics and Genomes, 8, pp. 1261-1279Menand, B., Desnos, T., Nussaume, L., Berger, F., Bouchez, D., Meyer, C., Robaglia, C., Expression and disruption of the Arabidopsis TOR (target of rapamycin) gene (2002) Proceedings of the National Academy of Sciences, USA, 99, pp. 6422-6427Mendgen, K., Hahn, M., Plant infection and the establishment of fungal biotrophy (2002) Trends in Plant Science, 7, pp. 352-356Metzenberg, R., Bird medium: An alternative to Vogel medium (2004) Fungal Genetics Newsletter, 51, pp. 19-20Mondego, J.M., Carazzolle, M.F., Costa, G.G., A genome survey of Moniliophthora perniciosa gives new insights into Witches' Broom Disease of cacao (2008) BMC Genomics, 9, p. 548Mukhtar, M.S., Carvunis, A.R., Dreze, M., Independently evolved virulence effectors converge onto hubs in a plant immune system network (2011) Science, 333, pp. 596-601Munch, S., Lingner, U., Floss, D.S., Ludwig, N., Sauer, N., Deising, H.B., The hemibiotrophic lifestyle of Colletotrichum species (2008) Journal of Plant Physiology, 165, pp. 41-51Newton, A.C., Fitt, B.D., Atkins, S.D., Walters, D.R., Daniell, T.J., Pathogenesis, parasitism and mutualism in the trophic space of microbe-plant interactions (2010) Trends in Microbiology, 18, pp. 365-373Oliver, R.P., Ipcho, S.V., Arabidopsis pathology breathes new life into the necrotrophs-vs.-biotrophs classification of fungal pathogens (2004) Molecular Plant Pathology, 5, pp. 347-352Olson, A., Aerts, A., Asiegbu, F., Insight into trade-off between wood decay and parasitism from the genome of a fungal forest pathogen (2012) New Phytologist, 194, pp. 1001-1013Orchard, J., Hardwick, K., Photosynthesis, carbohydrate translocation and metabolism of host and fungal tissues in cacao seedlings infected with Crinipellis perniciosa (1988) Proceedings of the 10th International Cocoa Research Conference, p. 325Oxborough, K., Baker, N., Resolving chlorophyll a fluorescence images of photosynthetic efficiency into photochemical and nonphotochemical components-calculation of qP and Fv-/Fm (1997) Photosynthesis Research, 54, p. 1997Paul, M.J., Pellny, T.K., Carbon metabolite feedback regulation of leaf photosynthesis and development (2003) Journal of Experimental Botany, 54, pp. 539-547Perfect, S.E., Green, J.R., Infection structures of biotrophic and hemibiotrophic fungal plant pathogens (2001) Molecular Plant Pathology, 2, pp. 101-108Pires, A.B., Gramacho, K.P., Silva, D.C., Early development of Moniliophthora perniciosa basidiomata and developmentally regulated genes (2009) BMC Microbiology, 9, p. 158Pirovani, C.P., Carvalho, H.A., Machado, R.C., Protein extraction for proteome analysis from cacao leaves and meristems, organs infected by Moniliophthora perniciosa, the causal agent of the witches' broom disease (2008) Electrophoresis, 29, pp. 2391-2401Pungartnik, C., Melo, S.C., Basso, T.S., Macena, W.G., Cascardo, J.C., Brendel, M., Reactive oxygen species and autophagy play a role in survival and differentiation of the phytopathogen Moniliophthora perniciosa (2009) Fungal Genetics and Biology, 46, pp. 461-472Purdy, L.H., Schmidt, R.A., Status of cacao witches' broom: Biology, epidemiology, and management (1996) Annual Review of Phytopathology, 34, pp. 573-594Robaglia, C., Thomas, M., Meyer, C., Sensing nutrient and energy status by SnRK1 and TOR kinases (2012) Current Opinion in Plant Biology, 15, pp. 301-307Rohde, J.R., Cardenas, M.E., Nutrient signaling through TOR kinases controls gene expression and cellular differentiation in fungi (2004) Current Topics in Microbiology and Immunology, 279, pp. 53-72Roitsch, T., Balibrea, M.E., Hofmann, M., Proels, R., Sinha, A.K., Extracellular invertase: Key metabolic enzyme and PR protein (2003) Journal of Experimental Botany, 54, pp. 513-524Roitsch, T., Bittner, M., Godt, D.E., Induction of apoplastic invertase of Chenopodium rubrum by d-glucose and a glucose analog and tissue-specific expression suggest a role in sink-source regulation (1995) Plant Physiology, 108, pp. 285-294Rolland, F., Baena-Gonzalez, E., Sheen, J., Sugar sensing and signaling in plants: Conserved and novel mechanisms (2006) Annual Review of Plant Biology, 57, pp. 675-709Rose, T.L., Bonneau, L., Der, C., Marty-Mazars, D., Marty, F., Starvation-induced expression of autophagy-related genes in Arabidopsis (2006) Biology of the Cell, 98, pp. 53-67Ruan, Y.L., Mate, C., Patrick, J.W., Brady, C.J., Non-destructive collection of apoplast fluid from developing tomato fruit using a pressure dehydration procedure (1995) Australian Journal of Plant Physiology, 22, p. 761Scarpari, L.M., Meinhardt, L.W., Mazzafera, P., Pomella, A.W., Schiavinato, M.A., Cascardo, J.C., Pereira, G.A., Biochemical changes during the development of witches' broom: The most important disease of cocoa in Brazil caused by Crinipellis perniciosa (2005) Journal of Experimental Botany, 56, pp. 865-877Smith, A.M., Zeeman, S.C., Quantification of starch in plant tissues (2006) Nature Protocols, 1, pp. 1342-1345Spanu, P.D., Abbott, J.C., Amselem, J., Genome expansion and gene loss in powdery mildew fungi reveal tradeoffs in extreme parasitism (2010) Science, 330, pp. 1543-1546Szewczyk, E., Nayak, T., Oakley, C.E., Edgerton, H., Xiong, Y., Taheri-Talesh, N., Osmani, S.A., Oakley, B.R., Fusion PCR and gene targeting in Aspergillus nidulans (2006) Nature Protocols, 6, pp. 3111-3120Talbot, N., McCfferty, H., Ma, M., Moore, K., Hamer, J., Nitrogen starvation of the rice blast fungus Magnaporthe grisea may act as an environmental cue for disease symptom expression (1997) Physiological and Molecular Plant Pathology, 50, pp. 179-195Thomazella, D.P., Teixeira, P.J., Oliveira, H.C., The hemibiotrophic cacao pathogen Moniliophthora perniciosa depends on a mitochondrial alternative oxidase for biotrophic development (2012) New Phytologist, 194, pp. 1025-1034Thomma, B., Bolton, M., Clergeot, P., De Wit, P., Nitrogen controls in planta expression of Cladosporium fulvum Avr9 but no other effector genes (2006) Molecular Plant Pathology, 7, pp. 125-130Thomma, B.P., Vane., H.P., Crous, P.W., Cladosporium fulvum (syn.Passalora fulva), a highly specialized plant pathogen as a model for functional studies on plant pathogenic Mycosphaerellaceae (2005) Molecular Plant Pathology, 6, pp. 379-393Trivellini, A., Jibran, R., Watson, L.M., O'donoghue, E.M., Ferrante, A., Sullivan, K.L., Dijkwel, P.P., Hunter, D.A., Carbon deprivation-driven transcriptome reprogramming in detached developmentally arresting Arabidopsis inflorescences (2012) Plant Physiology, 160, pp. 1357-1372Voegele, R., Mendgen, K., Nutrient uptake in rust fungi: How sweet is parasitic life (2011) Euphytica, 179, pp. 41-55Wilson, R.A., Fernandez, J., Quispe, C.F., Gradnigo, J., Seng, A., Moriyama, E., Wright, J.D., Towards defining nutrient conditions encountered by the rice blast fungus during host infection (2012) PLoS One, 7, p. e47392Wilson, R.A., Talbot, N.J., Under pressure: Investigating the biology of plant infection by Magnaporthe oryzae (2009) Nature Reviews Microbiology, 7, pp. 185-195Wingler, A., Masclaux-Daubresse, C., Fischer, A.M., Sugars, senescence, and ageing in plants and heterotrophic organisms (2009) Journal of Experimental Botany, 60, pp. 1063-1066Wingler, A., Roitsch, T., Metabolic regulation of leaf senescence: Interactions of sugar signalling with biotic and abiotic stress responses (2008) Plant Biology (Stuttgart), 10, pp. 50-62Zaparoli, G., Barsottini, M.R., De Oliveira, J.F., The crystal structure of necrosis-and ethylene-inducing protein 2 from the causal agent of cacao's Witches' Broom disease reveals key elements for its activity (2011) Biochemistry, 50, pp. 9901-991

    A Potential Role For An Extracellular Methanol Oxidase Secreted By Moniliophthora Perniciosa In Witches' Broom Disease In Cacao

    No full text
    The hemibiotrophic basidiomycete fungus Moniliophthora perniciosa, the causal agent of Witches' broom disease (WBD) in cacao, is able to grow on methanol as the sole carbon source. In plants, one of the main sources of methanol is the pectin present in the structure of cell walls. Pectin is composed of highly methylesterified chains of galacturonic acid. The hydrolysis between the methyl radicals and galacturonic acid in esterified pectin, mediated by a pectin methylesterase (PME), releases methanol, which may be decomposed by a methanol oxidase (MOX). The analysis of the M. pernciosa genome revealed putative mox and pme genes. Real-time quantitative RT-PCR performed with RNA from mycelia grown in the presence of methanol or pectin as the sole carbon source and with RNA from infected cacao seedlings in different stages of the progression of WBD indicate that the two genes are coregulated, suggesting that the fungus may be metabolizing the methanol released from pectin. Moreover, immunolocalization of homogalacturonan, the main pectic domain that constitutes the primary cell wall matrix, shows a reduction in the level of pectin methyl esterification in infected cacao seedlings. Although MOX has been classically classified as a peroxisomal enzyme, M. perniciosa presents an extracellular methanol oxidase. Its activity was detected in the fungus culture supernatants, and mass spectrometry analysis indicated the presence of this enzyme in the fungus secretome. Because M. pernciosa possesses all genes classically related to methanol metabolism, we propose a peroxisome-independent model for the utilization of methanol by this fungus, which begins with the extracellular oxidation of methanol derived from the demethylation of pectin and finishes in the cytosol. © 2012 Elsevier Inc.4911922932Aime, M.C., Phillips-Mora, W., The causal agents of Witches' broom and frosty pod rot of cacao (chocolate, Theobroma cacao) form a new lineage of Marasmiaceae (2005) Mycologia, 97, pp. 1012-1022Buckeridge, M.S., Reid, J.S., Purification and properties of a novel beta-galactosidase or exo-(1→4)-beta-d-galactanase from the cotyledons of germinated Lupinus angustifolius L. seeds (1994) Planta, 192, pp. 502-511Daniel, G., Volc, J., Filonova, L., Plihal, O., Kubatova, E., Halada, P., Characteristics of Gloeophyllum trabeum alcohol oxidase, an extracellular source of H2O2 in brown rot decay of wood (2007) Appl. Environ. Microbiol., 73, pp. 6241-6253de Hoop, M.J., Ab, G., Import of proteins into peroxisomes and other microbodies (1992) Biochem. J., 286 (PART 3), pp. 657-669de Souza, T.A., Soprano, A.S., de Lira, N.P., Quaresma, A.J., Pauletti, B.A., Paes Leme, A.F., Benedetti, C.E., The TAL effector PthA4 interacts with nuclear factors involved in RNA-dependent processes including a HMG protein that selectively binds poly(U) RNA (2012) PLoS One, 7, pp. e32305Delgado, J.C., Cook, A.A., Nuclear condition of basidia, basidiospores, and mycelium of Marasmius-Perniciosus (1976) Can. J. Bot. - Rev. Can. Bot., 54, pp. 66-72Evans, H.C., Witches broom disease of cocoa (Crinipellis-Perniciosa) in Ecuador 1. Fungus (1978) Ann. Appl. Biol., 89, pp. 185-192Evans, H.C., Pleomorphism in Crinipellis-Perniciosa, causal agent of Witches broom disease of cocoa (1980) Trans. Brit. Mycol. Soc., 74, pp. 515-523Evans, H.C., Bastos, C.N., Basidiospore germination as a means of assessing resistance to Crinipellis-Perniciosa (Witches broom disease) in cocoa cultivars (1980) Trans. Brit. Mycol. Soc., 74, pp. 525-536Frias, G.A., Purdy, L.H., Schmidt, R.A., Infection biology of Crinipellis-Perniciosa on vegetative flushes of cacao (1991) Plant Dis., 75, pp. 552-556Giuseppin, M.L., Van Eijk, H.M., Bes, B.C., Molecular regulation of methanol oxidase activity in continuous cultures of Hansenula polymorpha (1988) Biotechnol. Bioeng., 32, pp. 577-583Gould, S.G., Keller, G.A., Subramani, S., Identification of a peroxisomal targeting signal at the carboxy terminus of firefly luciferase (1987) J. Cell Biol., 105, pp. 2923-2931Griffith, G.W., Hedger, J.N., The breeding biology of biotypes of the Witches-broom pathogen of cocoa Crinipellis-Perniciosa (1994) Heredity., 72, pp. 278-289Griffith, G.W., Nicholson, J., Nenninger, A., Birch, R.N., Hedger, J.N., Witches' brooms and frosty pods: two major pathogens of cacao (2003) NZ J. Bot., 41, pp. 423-435Guimaraes, R.L., Stotz, H.U., Oxalate production by Sclerotinia sclerotiorum deregulates guard cells during infection (2004) Plant Physiol., 136, pp. 3703-3711Gunkel, K., van Dijk, R., Veenhuis, M., van der Klei, I.J., Routing of Hansenula polymorpha alcohol oxidase: an alternative peroxisomal protein-sorting machinery (2004) Mol. Biol. Cell, 15, pp. 1347-1355Han, Y., Joosten, H.J., Niu, W., Zhao, Z., Mariano, P.S., McCalman, M., van Kan, J., Dunaway-Mariano, D., Oxaloacetate hydrolase, the C-C bond lyase of oxalate secreting fungi (2007) J. Biol. Chem., 282, pp. 9581-9590Hanna, S.L., Sherman, N.E., Kinter, M.T., Goldberg, J.B., Comparison of proteins expressed by Pseudomonas aeruginosa strains representing initial and chronic isolates from a cystic fibrosis patient: an analysis by 2-D gel electrophoresis and capillary column liquid chromatography-tandem mass spectrometry (2000) Microbiology, 146 (PSRT 10), pp. 2495-2508Karnovsky, M.J., A formaldehyde-glutaraldehyde fixative of high osmolarity for use in electron microscopy (1965) J. Cell Biol., 27, p. 137Kaszycki, P., Koloczek, H., Formaldehyde and methanol biodegradation with the methylotrophic yeast Hansenula polymorpha in a model wastewater system (2000) Microbiol. Res., 154, pp. 289-296Langmead, B., Aligning short sequencing reads with Bowtie (2010) Curr. Protoc. Bioinfor, , Unit 11 7 (Chapter 11)Lazarow, P.B., The import receptor Pex7p and the PTS2 targeting sequence (2006) Biochim. Biophys. Acta, 1763, pp. 1599-1604Martinez, D., Challacombe, J., Morgenstern, I., Hibbett, D., Schmoll, M., Kubicek, C.P., Ferreira, P., Cullen, D., Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion (2009) Proc. Natl. Acad. Sci. USA, 106, pp. 1954-1959Meinhardt, L.W., Bellato Cde, M., Rincones, J., Azevedo, R.A., Cascardo, J.C., Pereira, G.A., In vitro production of biotrophic-like cultures of Crinipellis perniciosa, the causal agent of Witches' broom disease of Theobroma cacao (2006) Curr. Microbiol., 52, pp. 191-196Mondego, J.M., Carazzolle, M.F., Costa, G.G., Formighieri, E.F., Parizzi, L.P., Rincones, J., Cotomacci, C., Pereira, G.A., A genome survey of Moniliophthora perniciosa gives new insights into Witches' broom disease of cacao (2008) BMC Genom., 9, p. 548Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L., Wold, B., Mapping and quantifying mammalian transcriptomes by RNA-Seq (2008) Nat. Methods, 5, pp. 621-628Nakagawa, T., Miyaji, T., Yurimoto, H., Sakai, Y., Kato, N., Tomizuka, N., A methylotrophic pathway participates in pectin utilization by Candida boidinii (2000) Appl. Environ. Microbiol., 66, pp. 4253-4257Nakagawa, T., Yamada, K., Fujimura, S., Ito, T., Miyaji, T., Tomizuka, N., Pectin utilization by the methylotrophic yeast Pichia methanolica (2005) Microbiology, 151, pp. 2047-2052Nemecek-Marshall, M., MacDonald, R.C., Franzen, J.J., Wojciechowski, C.L., Fall, R., Methanol emission from leaves (enzymatic detection of gas-phase methanol and relation of methanol fluxes to stomatal conductance and leaf development) (1995) Plant Physiol., 108, pp. 1359-1368Orfila, C., Knox, J.P., Spatial regulation of pectic polysaccharides in relation to pit fields in cell walls of tomato fruit pericarp (2000) Plant Physiol., 122, pp. 775-781Ozimek, P., Kotter, P., Veenhuis, M., van der Klei, I.J., Hansenula polymorpha and Saccharomyces cerevisiae Pex5p's recognize different, independent peroxisomal targeting signals in alcohol oxidase (2006) FEBS Lett., 580, pp. 46-50Ozimek, P., Veenhuis, M., van der Klei, I.J., Alcohol oxidase: a complex peroxisomal, oligomeric flavoprotein (2005) FEMS Yeast Res., 5, pp. 975-983Pelloux, J., Rusterucci, C., Mellerowicz, E.J., New insights into pectin methylesterase structure and function (2007) Trends Plant Sci., 12, pp. 267-277Penman, D., Britton, G., Hardwick, K., Collin, H.A., Isaac, S., Chitin as a measure of biomass of Crinipellis perniciosa, causal agent of witches' broom disease of Theobroma cacao (2000) Mycol. Res., 104, pp. 671-675Pereira, J.L., Ram, A., Figuereido, J.M., de Almeida, L.C., La primera aparición de la " Escoba de Bruja" en la principal región productora de cacao del Brasil (1989) Turrialba, 36, pp. 459-461Pfaffl, M.W., A new mathematical model for relative quantification in real-time RT-PCR (2001) Nucl. Acids Res., 29, pp. e45Rincones, J., Scarpari, L.M., Carazzolle, M.F., Mondego, J.M., Formighieri, E.F., Barau, J.G., Costa, G.G., Pereira, G.A., Differential gene expression between the biotrophic-like and saprotrophic mycelia of the Witches' broom pathogen Moniliophthora perniciosa (2008) Mol. Plant-Microbe Interact., 21, pp. 891-908Rio, M.C., de Oliveira, B.V., de Tomazella, D.P., Silva, J.A., Pereira, G.A., Production of calcium oxalate crystals by the basidiomycete Moniliophthora perniciosa, the causal agent of witches' broom disease of cacao (2008) Curr. Microbiol., 56, pp. 363-370Roggenkamp, R., Janowicz, Z., Stanikowski, B., Hollenberg, C.P., Biosynthesis and regulation of the peroxisomal methanol oxidase from the methylotrophic yeast Hansenula polymorpha (1984) Mol. Gen. Genet., 194, pp. 489-493Rozen, S., Skaletsky, H., Primer3 on the WWW for general users and for biologist programmers (2000) Methods Mol. Biol., 132, pp. 365-386Sahm, H., Wagner, F., Microbial assimilation of methanol. The ethanol- and methanol-oxidizing enzymes of the yeast Candida boidinii (1973) Eur. J. Biochem., 36, pp. 250-256Sakai, T., Sakamoto, T., Hallaert, J., Vandamme, E.J., Pectin, pectinase and protopectinase: production, properties, and applications (1993) Adv. Appl. Microbiol., 39, pp. 213-294Scarpari, L.M., Meinhardt, L.W., Mazzafera, P., Pomella, A.W., Schiavinato, M.A., Cascardo, J.C., Pereira, G.A., Biochemical changes during the development of Witches' broom: the most important disease of cocoa in Brazil caused by Crinipellis perniciosa (2005) J. Exp. Bot., 56, pp. 865-877Schlosser, D., Fahr, K., Karl, W., Wetzstein, H.G., Hydroxylated metabolites of 2,4-dichlorophenol imply a Fenton-type reaction in Gloeophyllum striatum (2000) Appl. Environ. Microbiol., 66, pp. 2479-2483Segers, G., Bradshaw, N., Archer, D., Blissett, K., Oliver, R.P., Alcohol oxidase is a novel pathogenicity factor for Cladosporium fulvum, but aldehyde dehydrogenase is dispensable (2001) Mol. Plant-Microbe Interact., 14, pp. 367-377Silva, S., Histologia da Interação Crinipellis perniciosa em Cacaueiros Suscetível e Resistente à Vassoura-de-Bruxa (1999) Fitopatol. Bras., 24, pp. 54-59Teixeira, P.J.P.L., Mondego, J.M.C., Pereira, G.A.G., A method for production of Moniliophthora perniciosa basidiospores in vitro Manuscript in preparationThomazella, D.P., Teixeira, P.J., Oliveira, H.C., Saviani, E.E., Rincones, J., Toni, I.M., Reis, O., Pereira, G.A., The hemibiotrophic cacao pathogen Moniliophthora perniciosa depends on a mitochondrial alternative oxidase for biotrophic development (2012) New PhytolTiburcio, R.A., Costa, G.G., Carazzolle, M.F., Mondego, J.M., Schuster, S.C., Carlson, J.E., Guiltinan, M.J., Pereira, G.A., Genes acquired by horizontal transfer are potentially involved in the evolution of phytopathogenicity in Moniliophthora perniciosa and Moniliophthora roreri, two of the major pathogens of cacao (2010) J. Mol. Evol., 70, pp. 85-97Valette-Collet, O., Cimerman, A., Reignault, P., Levis, C., Boccara, M., Disruption of Botrytis cinerea pectin methylesterase gene Bcpme1 reduces virulence on several host plants (2003) Mol. Plant-Microbe Interact., 16, pp. 360-367Van der Klei, I.J., Bystrykh, L.V., Harder, W., Alcohol oxidase from Hansenula polymorpha CBS 4732 (1990) Methods Enzymol., 188, pp. 420-427Veenhuis, M., Van Dijken, J.P., Harder, W., The significance of peroxisomes in the metabolism of one-carbon compounds in yeasts (1983) Adv. Microb. Physiol., 24, pp. 1-82Vidal, R.O., Mondego, J.M., Pot, D., Ambrosio, A.B., Andrade, A.C., Pereira, L.F., Colombo, C.A., Pereira, G.A., A high-throughput data mining of single nucleotide polymorphisms in Coffea species expressed sequence tags suggests differential homeologous gene expression in the allotetraploid Coffea arabica (2010) Plant Physiol., 154, pp. 1053-1066Waterham, H.R., Russell, K.A., Vries, Y., Cregg, J.M., Peroxisomal targeting, import, and assembly of alcohol oxidase in Pichia pastoris (1997) J. Cell Biol., 139, pp. 1419-1431Wierenga, R.K., Terpstra, P., Hol, W.G.J., Prediction of the occurrence of the ADP-binding βαβ-fold in proteins, using an amino acid sequence fingerprint (1986) J. Mol. Biol., 187, pp. 101-107Willats, W.G., Limberg, G., Buchholt, H.C., van Alebeek, G.J., Benen, J., Christensen, T.M., Visser, J., Knox, J.P., Analysis of pectic epitopes recognised by hybridoma and phage display monoclonal antibodies using defined oligosaccharides, polysaccharides, and enzymatic degradation (2000) Carbohydrate Res., 327, pp. 309-320Willats, W.G., McCartney, L., Mackie, W., Knox, J.P., Pectin: cell biology and prospects for functional analysis (2001) Plant Mol. Biol., 47, pp. 9-27Wymelenberg, A.V., Gaskell, J., Mozuch, M., Sabat, G., Ralph, J., Skyba, O., Mansfield, S.D., Cullen, D., Comparative transcriptome and secretome analysis of wood decay fungi Postia placenta and Phanerochaete chrysosporium (2010) Appl. Environ. Microbiol., 76, pp. 3599-3610Yurimoto, H., Komeda, T., Lim, C.R., Nakagawa, T., Kondo, K., Kato, N., Sakai, Y., Regulation and evaluation of five methanol-inducible promoters in the methylotrophic yeast Candida boidinii (2000) Biochim. Biophys. Acta, 1493, pp. 56-63Yurimoto, H., Oku, M., Sakai, Y., Yeast methylotrophy: metabolism, gene regulation and peroxisome homeostasis (2011) Int. J. Microbiol., 2011, p. 10129

    Anatomia de estípulas e coléteres de Psychotria carthagenensis Jacq. (Rubiaceae) Stipule and colleter anatomy of Psychotria carthagenensis Jacq. (Rubiaceae)

    No full text
    Psychotria carthagenensis (Rubiaceae) pode ser identificada pela presença de estípulas apicais lanceoladas. Muitos gêneros da família têm estípulas com estruturas secretoras, denominadas coléteres. Sobre a estrutura de estípulas e coléteres pouco é conhecido. O objetivo do presente trabalho foi caracterizar anatomicamente estípulas e coléteres de indivíduos de P. carthagenensis ocorrentes no Estado de Santa Catarina (Brasil). Amostras de estípulas apicais dos ramos foram coletadas, fixadas e processadas para estudos em microscopias óptica e eletrônica de varredura. Testes histoquímicos foram aplicados em material in vivo. As estípulas são fundidas pela base e separadas na porção apical. Na face adaxial ocorrem tricomas multicelulares, entre os quais estão os coléteres. Estes têm base constricta, poros na superfície cuticular e epiderme em paliçada envolvendo um parênquima axial, o qual pode conter ráfides. Os coléteres secretam substâncias mucilaginosas. Esta secreção é muito importante para proteger o meristema apical caulinar e as folhas jovens.<br>Psychotria carthagenensis (Rubiaceae) is identified by the presence of lanceolate apical stipules. Several Rubiaceae genera have stipules with secretory structures called colleters. Little is known about the structures of stipules and colleters. This work aimed to characterize anatomically the stipules and the colleters of Psychotria carthagenensis from Santa Catarina state (Brazil). Apical shoot stipule samples were collected, fixed, and processed for light and scanning electron microscopy studies. Histochemical tests were made on in vivo material. The bases of stipules are connected and the apices are separate. On the adaxial surface, there are multicellular trichomes and the colleters are found among these. They have a constricted base, pores on the cuticle surface, parenchymatic middle axis surrounded by a layer of palisade-like epidermal cells, in which may have raphides. The colleters secrete a mucilaginous substance that is very important to protect the apical shoot and young leaves
    corecore