150 research outputs found
More green and less blue water in the Alps during warmer summers
Climate change can reduce surface-water supply by enhancing evapotranspiration in forested mountains, especially during heatwaves. We investigate this ‘drought paradox’ for the European Alps using a 1,212-station database and hyper-resolution ecohydrological simulations to quantify blue (runoff) and green (evapotranspiration) water fluxes. During the 2003 heatwave, evapotranspiration in large areas over the Alps was above average despite low precipitation, amplifying the runoff deficit by 32% in the most runoff-productive areas (1,300–3,000 m above sea level). A 3 °C air temperature increase could enhance annual evapotranspiration by up to 100 mm (45 mm on average), which would reduce annual runoff at a rate similar to a 3% precipitation decrease. This suggests that green-water feedbacks—which are often poorly represented in large-scale model simulations—pose an additional threat to water resources, especially in dry summers. Despite uncertainty in the validation of the hyper-resolution ecohydrological modelling with observations, this approach permits more realistic predictions of mountain region water availability
Implications of the Use of Grazing Sheep on Kiwi Fruit Orchard
In the southern part of Brazil there is an important area of kiwi fruit, mainly cultivated by small farmers. The use of sheep under trees of kiwi fruits could be an interesting alternative for small farmers to reduce their mowing costs, to improve their income and to provide meat for the farmers\u27 family. However there is a lack of information about the damage that the animals could cause to kiwi fruit plants. The objective of this study was to monitor the effect of the use of sheep on a kiwi fruit orchard
Cellular Models for River Networks
A cellular model introduced for the evolution of the fluvial landscape is
revisited using extensive numerical and scaling analyses. The basic network
shapes and their recurrence especially in the aggregation structure are then
addressed. The roles of boundary and initial conditions are carefully analyzed
as well as the key effect of quenched disorder embedded in random pinning of
the landscape surface. It is found that the above features strongly affect the
scaling behavior of key morphological quantities. In particular, we conclude
that randomly pinned regions (whose structural disorder bears much physical
meaning mimicking uneven landscape-forming rainfall events, geological
diversity or heterogeneity in surficial properties like vegetation, soil cover
or type) play a key role for the robust emergence of aggregation patterns
bearing much resemblance to real river networks.Comment: 7 pages, revtex style, 14 figure
- …