4,707 research outputs found

    The flavor of neutrinos in muon decays at a neutrino factory and the LSND puzzle

    Get PDF
    The accurate prediction of the neutrino beam produced in muon decays and the absence of opposite helicity contamination for a particular neutrino flavor make a future neutrino factory the ideal place to look for the lepton flavor violating (LFV) decays of the kind \mu^+\ra e^+\nuebar\numu and lepton number violating (LNV) processes like \mu^-\ra e^-\nue\numu. Excellent sensitivities can be achieved using a detector capable of muon and/or electron identification with charge discrimination. This would allow to set experimental limits that improve current ones by more than two orders of magnitude and test the hypothesis that the LSND excess is due to such anomalous decays, rather than neutrino flavor oscillations in vacuum.Comment: 19 pages, 4 figure

    Fine-grained entanglement loss along renormalization group flows

    Get PDF
    We explore entanglement loss along renormalization group trajectories as a basic quantum information property underlying their irreversibility. This analysis is carried out for the quantum Ising chain as a transverse magnetic field is changed. We consider the ground-state entanglement between a large block of spins and the rest of the chain. Entanglement loss is seen to follow from a rigid reordering, satisfying the majorization relation, of the eigenvalues of the reduced density matrix for the spin block. More generally, our results indicate that it may be possible to prove the irreversibility along RG trajectories from the properties of the vacuum only, without need to study the whole hamiltonian.Comment: 5 pages, 3 figures; minor change

    Quantum-enhanced gyroscopy with rotating anisotropic Bose–Einstein condensates

    Get PDF
    High-precision gyroscopes are a key component of inertial navigation systems. By considering matter wave gyroscopes that make use of entanglement it should be possible to gain some advantages in terms of sensitivity, size, and resources used over unentangled optical systems. In this paper we consider the details of such a quantum-enhanced atom interferometry scheme based on atoms trapped in a carefully-chosen rotating trap. We consider all the steps: entanglement generation, phase imprinting, and read-out of the signal and show that quantum enhancement should be possible in principle. While the improvement in performance over equivalent unentangled schemes is small, our feasibility study opens the door to further developments and improvements

    Friction Pile Foundations Subject to Regional Subsidence

    Get PDF
    A load mechanism and its associated displacements for friction piles driven in a soil subject to regional subsidence is presented. The effect of a surficial crust, which is not under consolidation, is analyzed and to avoid pile emersion, a boundary for the piles safety factor is established. Foundations supported on friction piles, where the foundation slab should always be in contact with the supporting soil, is also analyzed. It is proposed to consider that the load transmitted by the foundation slab be equal to the excavated weight and it is suggested that the increase pile-soil adherence with time, should be taken into account. A maximum value for pile load capacity, in order to avoid emersion, is obtained. Results from measurements, showing the deformation distribution with depth in the clay layers down to 32 m, are shown. Finally, a design example of a compensated foundation supported on friction piles, is presented
    • …
    corecore