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Fine-grained entanglement loss along renormalization-group flows
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We explore entanglement loss along renormalization group trajectories as a basic quantum information
property underlying their irreversibility. This analysis is carried out for the quantum Ising chain as a transverse
magnetic field is changed. We consider the ground-state entanglement between a large block of spins and the
rest of the chain. Entanglement loss is seen to follow from a rigid reordering, satisfying the majorization
relation, of the eigenvalues of the reduced density matrix for the spin block. More generally, our results
indicate that it may be possible to prove the irreversibility along renormalization group trajectories from the
properties of the vacuum only, without need to study the whole Hamiltonian.
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A very exciting perspective in quantum information sci- critical value\"=1, the ground state undergoes a quantum
ence is that of obtaining insights into the properties ofphase transition, while the departutes A" and A <\" are
strongly correlated quantum many-body systems and quaroth related to relevant operators that drive the RG flow
tum field theory from recent progress in the study of multi-away. This simple model corresponds in the continuum to a
partite quantum entanglemeft—3]. In this paper, we shall massive fermion whose mass is monotonically relatefh to
explore the possibility, suggested[ig,3], of relating the ir-  —1|. The reduced density matr'mthBL|O><0| for a block
reversibility of renormalization groufRG) flows to the en- 3, of L contiguous spins, can be computed using the tech-
tanglement properties of the vacuum state of a physical sysiiques developed in Ref3]. The von Neumann entropy of

tem. this mixed state,
Succesive RG transformations applied to the Hamiltonian
of a system produce a flow in coupling space as we analyze S (y,\) = —tr(p, log, p.), (2)

longer distances or, equivalently, smaller enerf#dsEvery
point along this RG flow provides the appropriate effectivequantifies how entangled the blo#k is with the rest of the
Hamiltonian suited to compute all observables at a giverspin chain. In3], the dependence of this entropy in the size
physical scale. The flow is irreversible for the unitary, L of the block was analyzed, revealing that a saturation value
Poincaré invariant, and renormalizable field theories in oné&(y,\) is achieved for block sizels larger than the correla-
dimension according to thetheorem[5,6]. This result may tion length¢ in the system. Here we shall consider only large
naively seem obvious since the integration of short-distancepin blocks3,, i.e., L> &, and study the dependence of en-
degrees of freedom appears to drop information. Yet, limitanglement, as given for instance by the saturated entropy
cycles are known to exist for exotic theorigg] and the  S(y,\), on the Hamiltonian parametessand \.
precise hypothesis sustaining thé¢heorem are of relevance.  Our characterization of entanglement loss along RG tra-
We envisage that the study of entanglement along RG trajegectories will progress through three stages, refining at every
tories will eventually lead to an alternative proof of their step the underlying ordering of quantum correlatio(is.
irreversibility, one based on information theoretical argu-First, we review the observation that the vacuum correspond-
ments. In the meantime, our results already show thaing to the ultraviolet fixed point of a theory is more en-
markedvestiges of irreversibility are present in properties otangled than the vacuum corresponding to its infrared fixed
the vacuum alone—that is, in properties that, in sharp conpoint [3], indicating a global loss of entanglemefit) Sec-
trast with the quantities used in tkeheorem, do not involve ond, for the quantum Ising model we detect a monotonic
the whole Hamiltonian of the system. decrease of the saturation entroglpng the RG flows, that
The key idea in the present analysis is that a loss of enis, we see that part of the entanglement in the theory is lost
tanglement occurs along RG trajectorigd. This will be  every time a RG transformation is appligdi) In the third
discussed for the ground std® of a quantum spin chain stage, we identify a fine-grained characterization of this
called theXY model, with Hamiltoniar{8-10] monotonic loss of entanglement by unveiling a rigid reorder-
N g L ing of the eigenvalues qf, along RG trajectories. We show
_ ty Y 2 that the above decrease in entropy actually follows from a
H=2 (T‘fi(gﬁﬁ Taiya?l”Jr )“Ti) (1) much more demanding set of inequalities for the eigenvalues
of p_, known as majorization relations, that are also fulfilled
in the limit of an infinite chainN— <. Most of the discus- along the RG flow.
sion will be conducted for the quantum lIsing chaiys1, Global loss of entanglemenm RG flow interpolates be-
with an arbitrary transverse magnetic field= [0,). At the  tween the ultraviolet fixed pointUV) of a theory and the

i=1
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infrared (IR) one. To prove its irreversibility, it is enough to

construct an observable quantity at the critical points, typi-
cally calledc, such thatcy,=cr. Any observer presented 1 25l i
with two different states of a quantum system could measure / :
c in both and decide which state is the UV precursor and__ 1t i
which is the IR result. Zamolodchikops] constructed an =
observable quantityC(g', ) for one-dimensional quantum «
systems depending on the couplingjsof the theory and a 0.5}
subtraction poinfu such that it decreases along RG flows,

0.75}

0.25} .
-gLc=o (3)
ﬂgi = VU, OF Lereeaenaeme

where 8 = udg/du are the beta functions of the theory. At A

criti_(ial points, conformal invariance is recovered and g 1. EntropyS,. (), in bits, of the quantum Ising chain as a
C(g",u)=c, wherec is the central charge of the conformal fynction of the magnetic field for L=100. The lowest branch has
field theory describing universal properties of the critical ¢>0.

system.

The computation of the von Neumann entropy for quan-
tum spin chains presented in R¢8] (which recovered re- 4. |cads to  a quantum superposition of states
sults from the conformal field theory first found in REE1]) (Schrodinger’s cat, or simply dat
showed that, at a quantum critical point, the entropy of a spin '
block B, does not reach a saturation value for latgebut (|02 + ) |+ I+ = o=z |_>N)/\;’§, (6)
that it instead scales as

(i) If symmetry breaking is not enforced=0, then the

_ whered)|+);=+[t);, so thatS(\ — 0)=1. While this state is
S(y \) = cre log, L, (4)  afixed point of the RG flow, it is unstable with respecteto
6 deformations of the Hamiltonian, which makes it flow to a
product state. Since the cat state, whose entrop$(s)
=10L <N, does not obey scaling and violates the clustering
s, principle, only the spontaneously broken vacuum makes

wherec=c for spin chains and=1/2 for thequantum Ising
model. This universal result combines with théheorem to
guarantee irreversibility of the RG flows for spin chain -
since the entropy turns out to be proportional to the centraf®Nse€ N field t_heory. . . .

charge at critical points, which are the initial and end points, 1N Saturation entrop$()) is particularly simple when
of the trajectory. To be precise, the system is probed fixing"® Magnetic field is close to its critical value.

any largeL. Then,

1
#VZ SR OL>1. (5) S()\)"’—8|092|1_)\|, (7)

Irreversibility is therefore rooted in an intrinsic property of as can be seen in F|g 2. Kitaev has previous|y derived this
the vacuum. Note that the original proof of theheorem is  expression analyticallj13].
based on correlators of the energy momentum tensor, which | et us make clear that monotonicity is always present in

couple to any degree of freedom. The entropy allows for &ne-coupling field theories. Consider a theory with many
recasting of this constraint in terms of vacuum properties

only.

Monotonic loss of entanglemenGlobal entanglement
loss can be made pointwise along the RG flow. Here we 2 —=
) ) g ) . N WREL]
illustrate this fact by considering the quantum Ising chain, = 4 1t R A a U : o x x*
vy=1. The computation of the saturated entrdgiy)=Sy A m . * e e 0
=1,\) is represented in Fig. 1. The plot shows a monotonic 0'= ; : .
decrease of the entropy #s-A| departs from zero, both for S _, ;|4 n : x . MERR IR
A>1 and\ <1. In the first case the theory flows towards a < * s % wog gk
product state corresponding to an infinitely massive fermiong -0.2¢
with S\ —)=0. The second case entails two possibilities. 3l

(i) The addition of a small magnetic fiekE;o}, e<1, to '
the Ising Hamiltonian induces again a flow towards a product T T B
state as\ — 0, that isS(\—0)=0. The effect of this mag- ' loézll—kl '

netic field is to break th&, symmetry of the model, thus

emulating the spontaneous symmetry breaking that would FIG. 2. Scaling of the Ising chain entro (\), in bits, as\
occur in the corresponding field theory. The model wjth approaches its critical valug"=1 [\ € (0.99,1.01], for various
=1, =1, e>0 was solved by Zamolodchikov showing that values ofL up toL=700 (solid black triangles Both left and right
the spectrum develops eight mas§&3)|. asymptotes scale & (\) ~—(1/6)logy|1-)\|.
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coupling where the beta functions are expressed as gradient
flows, that is, g'=G(g)(d/dg,)®(g), where Gl(g) is a
positive matrix and ®(g) is an observable. Then
-9l og)D(g)=-G'l (9P /g")(sP/dg') <0, proving mono-
tonicity. This is a trivial statement for a one-coupling theory
since the beta function only depends on one coupling and
can always be written as the derivative of some function.

Fine-grained loss of entanglemerthe monotonic de-
crease of the saturation entrofg\) with growing value of
|1-\| reflects the fact that the spectra of the underlying spin
block density matrices become more and more ordered as we
progress towards the infrared fixed point. It is natural to en-
quire if it is possible to characterize the reordering of density
matrix eigenvalues along the RG flow beyond the simple
entropic inequality discussed so far, and thereby unveil some
richer structure.

Direct numerical inspection shows that the convergence Ising chain —_
of the entropyS (y,\) in (2) into a saturation valu&(y,\) ‘
for sufficiently large spin block#,, L> ¢, actually fol_lows FIG. 3. (Colon) EntropyS,(y,\), in bits, for theXY spin chain
from the fac;t that t.he. yvhole spectrum Plf(%x)_eﬁ?m"’e'y as a function of anisotropy and magnetic field for L=100. The
converges into a limiting spectrugup to contributions be-  sojid red line in the projectioriphase diagrainis the critical XX
yond the numerical accuraay..=10'° used in the calcula- model(XX'), and the solid blue line is the criticXlY model (XY").
tions). Let p(A) =[py(N),p2(N), -, pg(N)] denote the limit-  QCP is the quantum critical point of the Ising chain.
ing spectrum for the Ising model with a given valuef the
transverse magnetic field, wher@;(\)=po(\)---pg(\)
=€, Then along both the RG trajectory associated with
A>1 and that associated with<1, we find the following  wherelL is larger than the correlation lengéfor both\ and
result. If [L-\’|>]1-\|, then the spectrunp(\’) is more  \’. That is, the spectrum of each individual fermion mode
ordered than the spectrupg\) in the sense of themajoriza-  satisfies majorizationg(\) <g;(\"). The majorization rela-
tion relation, denotedd(\)<p(\’) [14]. That is, we find tion p(\)<p(\’) follows then from a recursive use of the
that the set ofd inequalities =L;p;(\) <=L pi(\"), (n  following little lemma.
=1,2,...d) are simultaneously satisfied. This is a remark- Lemma Let X andy denote two probability vectors arx
able fact, since for largd, two randomly drawn probability a third one with componentg;;,=x;y;. Let the probability
distributionsx andy are highly unlikely to fulfill alld in-  vectorsx’, y’, andZ’ be related in the same way. Then

NN O g <qg(\) j=1,--,L, (10

equalities. Clearly, majorization reflects a very rigid reorder- o
ing of spectra along the RG flow. This reordering is actually X<Xx 03<7 (11)
so strict that it implies the monotonicity of a large number of y<y' z=z.

popular entropie$14]. For instance, all Renyi entropies of
index « [15] also decrease monotonically along the RG flow ~ Proof. The majorization relationx<x' and y<y' are
under study. This is not the first time majorization appears irfquivalen{14] to the existence of doubly stochastic matrices
the study of entanglement. In quantum information science, & andY such that; == Xyx, andy;=Z,Y;y; . It follows that
whole theory of entanglement transformations under local
operations and classical communication has been derived Zij) = X5 = 2 XaY iyl = 2 Zaiywn Ky (12)
based on this relatiofsee[16] for a review. . K

Let us detail the above computations. As discussed in Re(NhereZ(ij)(kDEXikY“ is also doubly stochastic and therefore
[3], the density matrixp, (\) results from the tensor product 523

. Z.
of the state;(A) of L fermion modes, The case\ <1 is slightly more complex. If a weak mag-

netic field is used to break th#, symmetry of the Ising
)= @ - @ eV, (8)  model, then the analytic derivation of Réf] cannot be
used. Instead, we have used DMRG techniques to directly
compute the spectrum @i (\), obtaining that majorization
is again satisfied. If, on the contrary, tll® symmetry is
preserved, then the spectrumgpfstill decomposes as i®),
( d:(N) ) % ( Ga() ) N ( a(n) ) (99  but(10) is violated by one fermionic mode and we cannot
1-q:(\) 1-g,(\) 1-q.(N)/’ use the above lemma. Nevertheless, a careful numerical
analysis for sufficiently large. shows that majorization is
where we choosey;(\)=ax(\)=---=q. (\)=1/2. Then, once more fulfilled along the RG flow that converges to the
for A>1 we find numerically that cat state(6).

so that the spectrum @f (\) is the direct product of binary
spectra,
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The analysis of the rest of th€Y model does not provide regarded as an infinitesimal change in its difoe instance,
further insight into the continuum limit, since the region in the continuum limit of a field theojy (13) says that ma-
wherey# 1 always corresponds to a massive fermion theoryjorization also controls the variations in the spectrum of the
(The coefficienty is eaten by the normalization of the kinetic vacuum density matrix when continuously increasing the
term) The result for the entropf (y,\) is represented in block size.

Fig. 3. It is interesting to note that the saturated entropy takes In this Brief Report, we have presented a collection of
the constant cat state vali§ =1) on the circley?+\?=1 results characterizing, in a simple quantum spin-chain model,
[9]. Furthermore, the entropy changes by a subleading corthe fine-grained loss of entanglement along RG trajectories.
stant along the critical\” line, S(y,\)-S(y',\")  This loss is a striking manifestation of the irreversibility of
=(1/6)log,(y/y'). The jump fromc=1/2 toc=1 that takes RG flows, one that only involves vacuum properties and not
place aty=0 is seen as a singularity in the field redefinition the whole hamiltonian of the system.

of the free fermion to achieve the continuum limit. The idea to attack RG irreverSibility from the state pOint

At any point in coupling space for theY model that we  ©Of view rather than from a discussion of flows in the space of
have been able to check, the increase of entr§pyy,\) Hamiltonians or correlators for the energy momentum tensor
>S5 (y,\) for L'>L is rooted in a strict reordering of the Needs to be made more concrete and more general. We have
ground state presented some evidence that RG irreversibility is already

encoded in a delicate reordering of the ground state. This
PL (v, N) < PL(mN). (13)  work needs to be extended to other states and non-Gaussian
theories. If explicit and general requirements for physically
This relation is valid only ifL is incremented in an even acceptable RG transformatiofas preserving unitarijyact-
number of stepdi.e., at leastL.’=L+2) due to the micro- ing directly on quantum states can be worked out, then per-
scopic structure of the spin-chain model. For large blocks ohaps the monotonic character of entanglement loss can be
spins withL>1, where adding two spins to a block can be derived from such considerations.
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