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We explore entanglement loss along renormalization group trajectories as a basic quantum information
property underlying their irreversibility. This analysis is carried out for the quantum Ising chain as a transverse
magnetic field is changed. We consider the ground-state entanglement between a large block of spins and the
rest of the chain. Entanglement loss is seen to follow from a rigid reordering, satisfying the majorization
relation, of the eigenvalues of the reduced density matrix for the spin block. More generally, our results
indicate that it may be possible to prove the irreversibility along renormalization group trajectories from the
properties of the vacuum only, without need to study the whole Hamiltonian.
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A very exciting perspective in quantum information sci-
ence is that of obtaining insights into the properties of
strongly correlated quantum many-body systems and quan-
tum field theory from recent progress in the study of multi-
partite quantum entanglementf1–3g. In this paper, we shall
explore the possibility, suggested inf2,3g, of relating the ir-
reversibility of renormalization groupsRGd flows to the en-
tanglement properties of the vacuum state of a physical sys-
tem.

Succesive RG transformations applied to the Hamiltonian
of a system produce a flow in coupling space as we analyze
longer distances or, equivalently, smaller energiesf4g. Every
point along this RG flow provides the appropriate effective
Hamiltonian suited to compute all observables at a given
physical scale. The flow is irreversible for the unitary,
Poincaré invariant, and renormalizable field theories in one
dimension according to thec theoremf5,6g. This result may
naively seem obvious since the integration of short-distance
degrees of freedom appears to drop information. Yet, limit
cycles are known to exist for exotic theoriesf7g and the
precise hypothesis sustaining thec theorem are of relevance.
We envisage that the study of entanglement along RG trajec-
tories will eventually lead to an alternative proof of their
irreversibility, one based on information theoretical argu-
ments. In the meantime, our results already show that
markedvestiges of irreversibility are present in properties of
the vacuum alone—that is, in properties that, in sharp con-
trast with the quantities used in thec theorem, do not involve
the whole Hamiltonian of the system.

The key idea in the present analysis is that a loss of en-
tanglement occurs along RG trajectoriesf3g. This will be
discussed for the ground stateu0l of a quantum spin chain
called theXY model, with Hamiltonianf8–10g
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in the limit of an infinite chain,N→`. Most of the discus-
sion will be conducted for the quantum Ising chain,g=1,
with an arbitrary transverse magnetic fieldlP f0,`d. At the

critical valuel* =1, the ground state undergoes a quantum
phase transition, while the departuresl.l* and l,l* are
both related to relevant operators that drive the RG flow
away. This simple model corresponds in the continuum to a
massive fermion whose mass is monotonically related toul
−1u. The reduced density matrixrL; tr¬BL

u0lk0u for a block
BL of L contiguous spins, can be computed using the tech-
niques developed in Ref.f3g. The von Neumann entropy of
this mixed state,

SLsg,ld ; − trsrL log2 rLd, s2d

quantifies how entangled the blockBL is with the rest of the
spin chain. Inf3g, the dependence of this entropy in the size
L of the block was analyzed, revealing that a saturation value
Ssg ,ld is achieved for block sizesL larger than the correla-
tion lengthj in the system. Here we shall consider only large
spin blocksBL, i.e., L@j, and study the dependence of en-
tanglement, as given for instance by the saturated entropy
Ssg ,ld, on the Hamiltonian parametersg andl.

Our characterization of entanglement loss along RG tra-
jectories will progress through three stages, refining at every
step the underlying ordering of quantum correlations.sid
First, we review the observation that the vacuum correspond-
ing to the ultraviolet fixed point of a theory is more en-
tangled than the vacuum corresponding to its infrared fixed
point f3g, indicating a global loss of entanglement.sii d Sec-
ond, for the quantum Ising model we detect a monotonic
decrease of the saturation entropyalong the RG flows, that
is, we see that part of the entanglement in the theory is lost
every time a RG transformation is applied.siii d In the third
stage, we identify a fine-grained characterization of this
monotonic loss of entanglement by unveiling a rigid reorder-
ing of the eigenvalues ofrL along RG trajectories. We show
that the above decrease in entropy actually follows from a
much more demanding set of inequalities for the eigenvalues
of rL, known as majorization relations, that are also fulfilled
along the RG flow.

Global loss of entanglement.A RG flow interpolates be-
tween the ultraviolet fixed pointsUVd of a theory and the
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infrared sIRd one. To prove its irreversibility, it is enough to
construct an observable quantity at the critical points, typi-
cally called c, such thatcUVùcIR. Any observer presented
with two different states of a quantum system could measure
c in both and decide which state is the UV precursor and
which is the IR result. Zamolodchikovf5g constructed an
observable quantityCsgi ,md for one-dimensional quantum
systems depending on the couplingsgi of the theory and a
subtraction pointm such that it decreases along RG flows,

− bi ]

]gi C ø 0, s3d

wherebi ;mdgi /dm are the beta functions of the theory. At
critical points, conformal invariance is recovered and
Csgi* ,md=c, wherec is the central charge of the conformal
field theory describing universal properties of the critical
system.

The computation of the von Neumann entropy for quan-
tum spin chains presented in Ref.f3g swhich recovered re-
sults from the conformal field theory first found in Ref.f11gd
showed that, at a quantum critical point, the entropy of a spin
block BL does not reach a saturation value for largeL, but
that it instead scales as

SLsg* ,l*d <
c + c̄

6
log2 L, s4d

wherec̄=c for spin chains andc=1/2 for thequantum Ising
model. This universal result combines with thec theorem to
guarantee irreversibility of the RG flows for spin chains,
since the entropy turns out to be proportional to the central
charge at critical points, which are the initial and end points
of the trajectory. To be precise, the system is probed fixing
any largeL. Then,

SL
UV ù SL

IR ∀ L @ 1. s5d

Irreversibility is therefore rooted in an intrinsic property of
the vacuum. Note that the original proof of thec theorem is
based on correlators of the energy momentum tensor, which
couple to any degree of freedom. The entropy allows for a
recasting of this constraint in terms of vacuum properties
only.

Monotonic loss of entanglement.Global entanglement
loss can be made pointwise along the RG flow. Here we
illustrate this fact by considering the quantum Ising chain,
g=1. The computation of the saturated entropySsld=Ssg
=1,ld is represented in Fig. 1. The plot shows a monotonic
decrease of the entropy asu1−lu departs from zero, both for
l.1 andl,1. In the first case the theory flows towards a
product state corresponding to an infinitely massive fermion
with Ssl→`d=0. The second case entails two possibilities.

sid The addition of a small magnetic fieldeoisi
x, e!1, to

the Ising Hamiltonian induces again a flow towards a product
state asl→0, that isSsl→0d=0. The effect of this mag-
netic field is to break theZ2 symmetry of the model, thus
emulating the spontaneous symmetry breaking that would
occur in the corresponding field theory. The model withg
=1, l=1, e.0 was solved by Zamolodchikov showing that
the spectrum develops eight massesf12g.

sii d If symmetry breaking is not enforced,e=0, then the
flow leads to a quantum superposition of states
sSchrödinger’s cat, or simply catd

su + l1u + l2 ¯ u + lN + u− l1u− l2 ¯ u− lNd/Î2, s6d

wheresi
xu± li = ± u± li, so thatSsl→0d=1. While this state is

a fixed point of the RG flow, it is unstable with respect toe
deformations of the Hamiltonian, which makes it flow to a
product state. Since the cat state, whose entropy isSsrLd
=1∀L,N, does not obey scaling and violates the clustering
principle, only the spontaneously broken vacuum makes
sense in field theory.

The saturation entropySsld is particularly simple when
the magnetic fieldl is close to its critical value.

Ssld , −
1

6
log2u1 − lu, s7d

as can be seen in Fig. 2. Kitaev has previously derived this
expression analyticallyf13g.

Let us make clear that monotonicity is always present in
one-coupling field theories. Consider a theory with many

FIG. 1. EntropySLsld, in bits, of the quantum Ising chain as a
function of the magnetic fieldl for L=100. The lowest branch has
e.0.

FIG. 2. Scaling of the Ising chain entropySLsld, in bits, asl
approaches its critical valuel* =1 flP s0.99,1.01dg, for various
values ofL up toL=700 ssolid black trianglesd. Both left and right
asymptotes scale asSLsld,−s1/6dlog2u1−lu.

BRIEF REPORTS PHYSICAL REVIEW A71, 034301s2005d

034301-2



coupling where the beta functions are expressed as gradient
flows, that is, bi =Gijsgds] /]gjdFsgd, where Gijsgd is a
positive matrix and Fsgd is an observable. Then
−bis] /]gidFsgd=−Gijs]F /]gids]F /]gjdø0, proving mono-
tonicity. This is a trivial statement for a one-coupling theory
since the beta function only depends on one coupling and
can always be written as the derivative of some function.

Fine-grained loss of entanglement.The monotonic de-
crease of the saturation entropySsld with growing value of
u1−lu reflects the fact that the spectra of the underlying spin
block density matrices become more and more ordered as we
progress towards the infrared fixed point. It is natural to en-
quire if it is possible to characterize the reordering of density
matrix eigenvalues along the RG flow beyond the simple
entropic inequality discussed so far, and thereby unveil some
richer structure.

Direct numerical inspection shows that the convergence
of the entropySLsg ,ld in s2d into a saturation valueSsg ,ld
for sufficiently large spin blocksBL, L@j, actually follows
from the fact that the whole spectrum ofrLsg ,ld effectively
converges into a limiting spectrumsup to contributions be-
yond the numerical accuracyeacc=10−16 used in the calcula-
tionsd. Let pWsld;fp1sld ,p2sld ,¯ ,pdsldg denote the limit-
ing spectrum for the Ising model with a given valuel of the
transverse magnetic field, wherep1sldùp2sld¯pdsld
ùeacc. Then along both the RG trajectory associated with
l.1 and that associated withl,1, we find the following
result. If u1−l8u. u1−lu, then the spectrumpWsl8d is more
ordered than the spectrumpWsld in the sense of themajoriza-
tion relation, denotedpWsldapWsl8d f14g. That is, we find
that the set ofd inequalities oi=1

n pisldøoi=1
n pisl8d, sn

=1,2, . . . ,dd are simultaneously satisfied. This is a remark-
able fact, since for larged, two randomly drawn probability
distributionsxW and yW are highly unlikely to fulfill all d in-
equalities. Clearly, majorization reflects a very rigid reorder-
ing of spectra along the RG flow. This reordering is actually
so strict that it implies the monotonicity of a large number of
popular entropiesf14g. For instance, all Renyi entropies of
indexa f15g also decrease monotonically along the RG flow
under study. This is not the first time majorization appears in
the study of entanglement. In quantum information science, a
whole theory of entanglement transformations under local
operations and classical communication has been derived
based on this relationsseef16g for a reviewd.

Let us detail the above computations. As discussed in Ref.
f3g, the density matrixrLsld results from the tensor product
of the states% jsld of L fermion modes,

rLsld = %1sld ^ ¯ ^ %Lsld, s8d

so that the spectrum ofrLsld is the direct product ofL binary
spectra,

S q1sld
1 − q1sld

D 3 S q2sld
1 − q2sld

D 3 ¯ 3 S qLsld
1 − qLsld

D , s9d

where we chooseq1sldùq2sldù ¯ ùqLsldù1/2. Then,
for l.1 we find numerically that

l , l8 ⇒ qjsld ø qjsl8d j = 1,¯ ,L, s10d

whereL is larger than the correlation lengthj for bothl and
l8. That is, the spectrum of each individual fermion mode
satisfies majorization,qW jsldaqW jsl8d. The majorization rela-
tion pWsldapWsl8d follows then from a recursive use of the
following little lemma.

Lemma. Let xW andyW denote two probability vectors andzW
a third one with componentszsi j d;xiyj. Let the probability
vectorsxW8, yW8, andzW8 be related in the same way. Then

HxW a xW8

yW a yW8
J ⇒ zW a zW8. s11d

Proof. The majorization relationsxW axW8 and yW ayW8 are
equivalentf14g to the existence of doubly stochastic matrices
X andY such thatxi =okXikxk8 andyj =olYjlyl8. It follows that

zsi j d = xiyj = o
kl

XikYjlxk8yl8 = o
kl

Zsi j dskldzskld8 , s12d

whereZsi j dskld;XikYjl is also doubly stochastic and therefore
zWazW8.

The casel,1 is slightly more complex. If a weak mag-
netic field is used to break theZ2 symmetry of the Ising
model, then the analytic derivation of Ref.f3g cannot be
used. Instead, we have used DMRG techniques to directly
compute the spectrum ofrLsld, obtaining that majorization
is again satisfied. If, on the contrary, theZ2 symmetry is
preserved, then the spectrum ofrL still decomposes as ins9d,
but s10d is violated by one fermionic mode and we cannot
use the above lemma. Nevertheless, a careful numerical
analysis for sufficiently largeL shows that majorization is
once more fulfilled along the RG flow that converges to the
cat states6d.

FIG. 3. sColord EntropySLsg ,ld, in bits, for theXY spin chain
as a function of anisotropyg and magnetic fieldl for L=100. The
solid red line in the projectionsphase diagramd is the criticalXX
modelsXX*d, and the solid blue line is the criticalXY modelsXY*d.
QCP is the quantum critical point of the Ising chain.
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The analysis of the rest of theXY model does not provide
further insight into the continuum limit, since the region
wheregÞ1 always corresponds to a massive fermion theory.
sThe coefficientg is eaten by the normalization of the kinetic
term.d The result for the entropySLsg ,ld is represented in
Fig. 3. It is interesting to note that the saturated entropy takes
the constant cat state valuesSL=1d on the circleg2+l2=1
f9g. Furthermore, the entropy changes by a subleading con-
stant along the critical l* line, SLsg ,l*d−SLsg8 ,l*d
=s1/6dlog2sg /g8d. The jump fromc=1/2 to c=1 that takes
place atg=0 is seen as a singularity in the field redefinition
of the free fermion to achieve the continuum limit.

At any point in coupling space for theXY model that we
have been able to check, the increase of entropySL8sg ,ld
.SLsg ,ld for L8.L is rooted in a strict reordering of the
ground state

pWL8sg,ld a pWLsg,ld. s13d

This relation is valid only ifL is incremented in an even
number of stepssi.e., at leastL8=L+2d due to the micro-
scopic structure of the spin-chain model. For large blocks of
spins withL@1, where adding two spins to a block can be

regarded as an infinitesimal change in its sizesfor instance,
in the continuum limit of a field theoryd, s13d says that ma-
jorization also controls the variations in the spectrum of the
vacuum density matrix when continuously increasing the
block size.

In this Brief Report, we have presented a collection of
results characterizing, in a simple quantum spin-chain model,
the fine-grained loss of entanglement along RG trajectories.
This loss is a striking manifestation of the irreversibility of
RG flows, one that only involves vacuum properties and not
the whole hamiltonian of the system.

The idea to attack RG irreversibility from the state point
of view rather than from a discussion of flows in the space of
Hamiltonians or correlators for the energy momentum tensor
needs to be made more concrete and more general. We have
presented some evidence that RG irreversibility is already
encoded in a delicate reordering of the ground state. This
work needs to be extended to other states and non-Gaussian
theories. If explicit and general requirements for physically
acceptable RG transformationssas preserving unitarityd act-
ing directly on quantum states can be worked out, then per-
haps the monotonic character of entanglement loss can be
derived from such considerations.

f1g T. J. Osborne and M. A. Nielsen, Phys. Rev. A66, 032110
s2002d; C. M. Dawson and M. A. Nielsen, e-print quant-ph/
0401061; H. L. Haselgrowe, M. A. Nielsen, and T. J. Osborne,
e-print quant-ph/0308083; F. Verstraete, M. Popp, and J. I.
Cirac, Phys. Rev. Lett.92, 027901s2004d; F. Verstraete, M. A.
Martin-Delgado, and J. I. Cirac,ibid. 92, 087201s2004d; A.
Osterloh, L. Amico, G. Falci, and R. Fazio, NaturesLondond
416, 608 s2002d; G. Vidal, e-print quant-ph/0310089; A. J.
Daley, C. Kollath, U. Schollwoeck, and G. Vidal, e-print cond-
mat/0403313; T. Roscilde, P. Verrucchi, A. Fubini, S. Haas,
and V. Tognetti, e-print quant-ph/0404403.

f2g J. Preskill, J. Mod. Opt.47, 127–137s2000d.
f3g G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev, e-print quant-

ph/0211074; Phys. Rev. Lett.90, 227902s2003d; J. I. Latorre,
E. Rico, and G. Vidal, e-print quant-ph/0304098; Quantum Inf.
Comput. 4, 48 s2004d.

f4g K. G. Wilson and J. Kogut, Phys. Rep., Phys. Lett.12C, 75
s1974d.

f5g A. B. Zamolodchikov, JETP Lett.43, 730 s1986d.

f6g A. Cappelli, D. Friedan, and J. I. Latorre, Nucl. Phys. B352,
616 s1991d; S. Forte and J. I. Latorre,ibid. 535, 709 s1998d.

f7g S. D. Glazek and K. G. Wilson, Phys. Rev. Lett.89, 230401
s2002d; A. Morozov and A. J. Niemi, Nucl. Phys. B666, 311
s2003d; A. LeClair and G. Sierra, e-print hep-th/0403178.

f8g P. Pfeuty, Ann. Phys.sSan Diegod 57, 79 s1970d.
f9g E. Barouch and B. M. McCoy, Phys. Rev. A3, 786 s1971d.

f10g J. Kurmann, H. Thomas, and G. Muller, Physica A112, 235
s1982d; S. Sachdev,Quantum Phase TransitionssCambridge
University Press, Cambridge, 1999d.

f11g C. Holzhey, F. Larsen, and F. Wilczek, Nucl. Phys. B424, 443
s1994d.

f12g A. B. Zamolodchikov, Int. J. Mod. Phys. A4, 4235s1989d.
f13g A. Kitaev sprivate communicationd.
f14g R. Bhatia,Matrix AnalysissSpringer-Verlag, New York, 1997d.
f15g A. Wehrl, Rev. Mod. Phys.50, 221 s1978d.
f16g M. A. Nielsen and G. Vidal, Quantum Inf. Comput.1, 76

s2002d.

BRIEF REPORTS PHYSICAL REVIEW A71, 034301s2005d

034301-4


