22,076 research outputs found
Enhanced Spontaneous Emission Into The Mode Of A Cavity QED System
We study the light generated by spontaneous emission into a mode of a cavity
QED system under weak excitation of the orthogonally polarized mode. Operating
in the intermediate regime of cavity QED with comparable coherent and
decoherent coupling constants, we find an enhancement of the emission into the
undriven cavity mode by more than a factor of 18.5 over that expected by the
solid angle subtended by the mode. A model that incorporates three atomic
levels and two polarization modes quantitatively explains the observations.Comment: 9 pages, 2 figures, to appear in May 2007 Optics Letter
Kaolinite-catalyzed air oxidation of hydrazine: Consideration of several compositional, structural and energetic factors in surface activation
Clay minerals have been shown to have numerous, curious, energetic properties by virtue of ultra-violet light release which can be triggered by gentle environmental changes such as wetting and dewetting by a variety of liquids, unique among them water and hydrazine. Since both water and hydrazine play multiple key roles in the air-oxidation of hydrazine on kaolinite surfaces, this reaction would seem to have prime potential for studying interrelationships of energy storage, release and chemical reactivity of clay surfaces, capacities basic to either the Bernal or Cairns-Smith roles of minerals in the origin of life. Establishment of the capacity for stored electronic energy to significantly alter surface chemistry is important, regardless of the reaction chosen to demonstrate it. Hydrazine air oxidation is overawingly complex, given the possibilities for step-wise control and monitoring of parameters. In the light of recently extended characterization of the kaolinite and model sheet catalysts we used to study hydrazine oxidation and gamma-irradiated silica, previous studies of hydrazine air-oxidation on aluminosilicate surfaces have been reevaluated. Our former conclusion remains intact that, whereas trace structural and surface contaminants do play some role in the catalysis of oxidation, they are not the only, nor even the dominant, catalytic centers. Initial intermediates in the oxidation can now be proposed which are consistent with production via O(-)-centers as well as ferric iron centers. The greater than square dependence of the initial reaction rate on the weight of the clay is discussed in the light of these various mechanistic possibilities
3-D Photoionization Structure and Distances of Planetary Nebulae III. NGC 6781
Continuing our series of papers on the three-dimensional (3-D) structures of
and accurate distances to Planetary Nebulae (PNe), we present our study of the
planetary nebula NGC6781. For this object we construct a 3-D photoionization
model and, using the constraints provided by observational data from the
literature we determine the detailed 3-D structure of the nebula, the physical
parameters of the ionizing source and the first precise distance. The procedure
consists in simultaneously fitting all the observed emission line morphologies,
integrated intensities and the 2-D density map from the [SII] line ratios to
the parameters generated by the model, and in an iterative way obtain the best
fit for the central star parameters and the distance to NGC6781, obtaining
values of 950+-143pc and 385 Lsun for the distance and luminosity of the
central star respectively. Using theoretical evolutionary tracks of
intermediate and low mass stars, we derive the mass of the central star of
NGC6781 and its progenitor to be 0.60+-0.03 Msun and 1.5+-0.5 Msun
respectively.Comment: 16 pp, 6 figues, 2 tables, submitted to the Ap
Steady State Entanglement in Cavity QED
We investigate steady state entanglement in an open quantum system,
specifically a single atom in a driven optical cavity with cavity loss and
spontaneous emission. The system reaches a steady pure state when driven very
weakly. Under these conditions, there is an optimal value for atom-field
coupling to maximize entanglement, as larger coupling favors a loss port due to
the cavity enhanced spontaneous emission. We address ways to implement
measurements of entanglement witnesses and find that normalized
cross-correlation functions are indicators of the entanglement in the system.
The magnitude of the equal time intensity-field cross correlation between the
transmitted field of the cavity and the fluorescence intensity is proportional
to the concurrence for weak driving fields.Comment: enhanced discussion, corrected formulas, title change, 1 added figur
Strong Coupling Expansions for Antiferromagnetic Heisenberg S=1/2 Ladders
The properties of antiferromagnetic Heisenberg ladders with
2, 3, and 4 chains are expanded in the ratio of the intra- and interchain
coupling constants. A simple mapping procedure is introduced to relate the 4
and 2-chain ladders which holds down to moderate values of the expansion
parameters. A second order calculation of the spin gap to the lowest triplet
excitation in the 2- and 4-chain ladders is found to be quite accurate even at
the isotropic point where the couplings are equal. Similar expansions and
mapping procedures are presented for the 3-chain ladders which are in the same
universality class as single chains.Comment: 10 physical pages, uuencoded compressed PostScript file including 12
figures, ETH-TH/942
Temperature dependent photoluminescence of single CdS nanowires
Temperature dependent photoluminescence (PL) is used to study the electronic
properties of single CdS nanowires. At low temperatures, both near-band edge
(NBE) photoluminescence (PL) and spatially-localized defect-related PL are
observed in many nanowires. The intensity of the defect states is a sensitive
tool to judge the character and structural uniformity of nanowires. As the
temperature is raised, the defect states rapidly quench at varying rates
leaving the NBE PL which dominates up to room temperature. All PL lines from
nanowires follow closely the temperature-dependent band edge, similar to that
observed in bulk CdS.Comment: 11 pages, 4 figure
Curatorship applications: The role of neuropsychology
This article highlights ethical issues that may arise in the relationship between curatorship applications and neuropsychology. In South Africa (SA), curatorship applications for the elderly diagnosed with dementia require substantiation from two medical professionals, one of whom should be a practising psychiatrist deemed competent to provide this. Concurrently, there is often a request for a psychologist to conduct a neuropsychological assessment and to produce a relevant report. The process may result in ethical issues at various stages of the assessment. The balance between protecting the patient’s rights v. freedom of autonomy becomes a central issue. Psychiatrists and psychologists are cautioned to adhere to best practices throughout the assessment, maintaining a critical and reflective stance. The limitations of cognitive assessment as a predictor of functionality should be considered. Furthermore, neuropsychological training in SA differs across institutions, resulting in variable practitioner competency. ‘Competency’ itself is an ambiguous legal term that may be interpreted variably. This article outlines the definitions and requirements of the curatorship process, as well as the role and limitations of neuropsychology, with emphasis on the ethical dilemmas that may arise
- …