12,726 research outputs found

    Fermi detected blazars seen by INTEGRAL

    Full text link
    Multiwavelength observations are essential to constrain physical parameters of the blazars observed by Fermi/LAT. Among the 187 AGN significantly detected in public INTEGRAL data above 20 keV by the imager IBIS/ISGRI, 20 blazars were detected. 15 of these sources allowed significant spectral extraction. They show hard X-ray spectra with an average photon index of 2.1+-0.1 and a hard X-ray luminosity of L(20-100 keV) = 1.3e46 erg/s. 15 of the INTEGRAL blazars are also visible in the first 16 months of the Fermi/LAT data, thus allowing to constrain the inverse Compton branch in these cases. Among others, we analyse the LAT data of four blazars which were not included in the Fermi LAT Bright AGN Sample based on the first 3 months of the mission: QSO B0836+710, H 1426+428, RX J1924.8-2914, and PKS 2149-306. Especially for blazars during bright outbursts, as already observed simultaneously by INTEGRAL and Fermi (e.g. 3C 454.3 and Mrk 421), INTEGRAL provides unique spectral coverage up to several hundred keV. We present the spectral analysis of INTEGRAL and Fermi data and demonstrate the potential of INTEGRAL observations of Fermi detected blazars in outburst by analysing the combined data set of the persistent radio galaxy Cen A.Comment: 5 pages, 5 figures, 2009 Fermi Symposium, eConf Proceedings C09112

    A hot bubble at the centre of M81

    Full text link
    Context. Messier 81 has the nearest active nucleus with broad Hα\alpha emission. A detailed study of this galaxy's centre is important for understanding the innermost structure of the AGN phenomenon. Aims. Our goal is to seek previously undetected structures using additional techniques to reanalyse a data cube obtained with the GMOS-IFU installed on the Gemini North telescope (Schnorr M\"uller et al. 2011). Method. We analysed the data cube using techniques of noise reduction, spatial deconvolution, starlight subtraction, PCA tomography, and comparison with HST images. Results. We identified a hot bubble with T >> 43500 K that is associated with strong emission of [N II]λ\lambda5755\AA\ and a high [O I]λ\lambda6300/Hα\alpha ratio; the bubble displays a bluish continuum, surrounded by a thin shell of Hα\alpha + [N II] emission. We also reinterpret the outflow found by Schnorr M\"uller et al. (2011) showing that the blueshifted cone nearly coincides with the radio jet, as expected. Conclusions. We interpret the hot bubble as having been caused by post starburst events that left one or more clusters of young stars, similar to the ones found at the centre of the Milky Way, such as the Arches and the IRS 16 clusters. Shocked structures from combined young stellar winds or supernova remnants are probably the cause of this hot gas and the low ionization emission.Comment: 5 pages, 4 figures, accepted for publication in A&

    Bounds on hep neutrinos

    Get PDF
    The excess of highest energy solar-neutrino events recently observed by Superkamiokande can be in principle explained by anomalously high hephep-neutrino flux Φν(hep)\Phi_{\nu}(hep). Without using SSM calculations, from the solar luminosity constraint we derive that Φν(hep)/S13\Phi_\nu(hep)/S_{13} cannot exceed the SSM estimate by more than a factor three. If one makes the additional hypothesis that hephep neutrino production occurs where the 3^3He concentration is at equilibrium, helioseismology gives an upper bound which is (less then) two times the SSM prediction. We argue that the anomalous hephep-neutrino flux of order of that observed by Superkamiokande cannot be explained by astrophysics, but rather by a large production cross-section.Comment: 7 pages, RevTeX fil

    NGC 7097: the AGN and its mirror, revealed by PCA Tomography

    Full text link
    Three-dimensional (3D) spectroscopy techniques are becoming more and more popular, producing an increasing number of large data cubes. The challenge of extracting information from these cubes requires the development of new techniques for data processing and analysis. We apply the recently developed technique of Principal Component Analysis (PCA) Tomography to a data cube from the center of the elliptical galaxy NGC 7097 and show that this technique is effective in decomposing the data into physically interpretable information. We find that the first five principal components of our data are associated with distinct physical characteristics. In particular, we detect a LINER with a weak broad component in the Balmer lines. Two images of the LINER are present in our data, one seen through a disk of gas and dust, and the other after scattering by free electrons and/or dust particles in the ionization cone. Furthermore, we extract the spectrum of the LINER, decontaminated from stellar and extended nebular emission, using only the technique of PCA Tomography. We anticipate that the scattered image has polarized light, due to its scattered nature.Comment: 12 pages, 5 figures, accepted for publication in ApJ Letter

    Properties of (Ga1−x_{1-x}Inx_x)2_2O3_3 over the whole xx range

    Full text link
    Using density-functional ab initio theoretical techniques, we study (Ga1−x_{1-x}Inx_x)2_2O3_3 in both its equilibrium structures (monoclinic β\beta and bixbyite) and over the whole range of composition. We establish that the alloy exhibits a large and temperature-independent miscibility gap. On the low-xx side, the favored phase is isostructural with β\beta-Ga2_2O3_3; on the high-xx side, it is isostructural with bixbyite In2_2O3_3. The miscibility gap opens between approximately 15\% and 55\% In content for the bixbyite alloy grown epitaxially on In2_2O3_3, and 15\% and 85\% In content for the free-standing bixbyite alloy. The gap, volume and band offsets to the parent compound also exhibit anomalies as function of xx. Specifically, the offsets in epitaxial conditions are predominantly type-B staggered, but have opposite signs in the two end-of-range phases.Comment: 7 pages, 4 figure
    • …
    corecore