7,845 research outputs found

    Interaction of Copper Alloys with Hydrogen

    Get PDF

    Optimization and characterization of tungsten thick coatings on copper based ally substrates

    Get PDF
    Tungsten is a promising armour material for plasma facing components of nuclear fusion reactors because of its low sputter rate and favourable thermo-mechanical properties. Among all the techniques able to realise W armours, plasma spray looks particularly attractive owing to its simplicity and low cost. The present work concerns the optimisation of spraying parameters aimed at 4–5 mm thickWcoating on copper–chromium–zirconium (Cu,Cr,Zr) alloy substrates. Characterisation of coatings was performed in order to assess microstructure, impurity content, density, tensile strength, adhesion strength, thermal conductivity and thermal expansion coefficient. The work performed has demonstrated the feasibility of thick W coatings on flat and curved geometries. These coatings appear as a reliable armour for medium heat flux plasma facing component

    Dissecting the Pharmacodynamics and Pharmacokinetics of MSCs to Overcome Limitations in Their Clinical Translation

    Get PDF
    Recently, mesenchymal stromal stem cells (MSCs) have been proposed as therapeutic agents because of their promising preclinical features and good safety profile. However, their introduction into clinical practice has been associated with a suboptimal therapeutic profile. In this review, we address the biodistribution of MSCs in preclinical studies with a focus on the current understanding of the pharmacodynamics (PD) and pharmacokinetics (PK) of MSCs as key aspects to overcome unsatisfactory clinical benefits of MSC application. Beginning with evidence of MSC biodistribution and highlighting PK and PD factors, a new PK-PD model is also proposed. According to this theory, MSCs and their released factors are key players in PK, and the efficacy biomarkers are considered relevant for PD in more predictive preclinical investigations. Accounting for the PK-PD relationship in MSC translational research and proposing new models combined with better biodistribution studies could allow realization of the promise of more robust MSC clinical translation. The number of clinical trials based on MSCs that are publicly available exceeds 800; however, data regarding MSC pharmacodynamics (PD), pharmacokinetics (PK), and biodistribution are still scarce. For this reason, we dissected the PD and PK properties of MSCs, presenting factors that may influence MSC-based PK studies to then conceive a new PK-PD model that would support better and more robust MSC clinical translation

    Magellan Adaptive Optics first-light observations of the exoplanet beta Pic b. II. 3-5 micron direct imaging with MagAO+Clio, and the empirical bolometric luminosity of a self-luminous giant planet

    Get PDF
    Young giant exoplanets are a unique laboratory for understanding cool, low-gravity atmospheres. A quintessential example is the massive extrasolar planet β\beta Pic b, which is 9 AU from and embedded in the debris disk of the young nearby A6V star β\beta Pictoris. We observed the system with first light of the Magellan Adaptive Optics (MagAO) system. In Paper I we presented the first CCD detection of this planet with MagAO+VisAO. Here we present four MagAO+Clio images of β\beta Pic b at 3.1 μ\mum, 3.3 μ\mum, L′L^\prime, and M′M^\prime, including the first observation in the fundamental CH4_4 band. To remove systematic errors from the spectral energy distribution (SED), we re-calibrate the literature photometry and combine it with our own data, for a total of 22 independent measurements at 16 passbands from 0.99--4.8 μ\mum. Atmosphere models demonstrate the planet is cloudy but are degenerate in effective temperature and radius. The measured SED now covers >>80\% of the planet's energy, so we approach the bolometric luminosity empirically. We calculate the luminosity by extending the measured SED with a blackbody and integrating to find log(LbolL_{bol}/LSunL_{Sun}) =−3.78±0.03= -3.78\pm0.03. From our bolometric luminosity and an age of 23±\pm3 Myr, hot-start evolutionary tracks give a mass of 12.7±\pm0.3 MJupM_{Jup}, radius of 1.45±\pm0.02 RJupR_{Jup}, and TeffT_{eff} of 1708±\pm23 K (model-dependent errors not included). Our empirically-determined luminosity is in agreement with values from atmospheric models (typically −3.8-3.8 dex), but brighter than values from the field-dwarf bolometric correction (typically −3.9-3.9 dex), illustrating the limitations in comparing young exoplanets to old brown dwarfs.Comment: Accepted to ApJ. 27 pages, 22 figures, 19 table

    Mutation in a conserved motif next to the insulin receptor key autophosphorylation sites de-regulates kinase activity and impairs insulin action.

    Get PDF
    We have recently reported two non-insulin-dependent diabetic patients exhibiting a heterozygous point mutation (R1152-Q) next to the key tyrosine autophosphorylation sites (Y1146, Y1150, Y1151) of the insulin receptor. In the present study, we demonstrate that the Q1152 mutation alters a previously unrecognized consensus sequence in the insulin receptor family of tyrosine kinases. To define the effect of this alteration on insulin receptor function, the mutant insulin receptor (Q1152) was constructed and overexpressed in NIH-3T3 cells. In spite of normal insulin binding, "in vivo" and "in vitro" autophosphorylation as well as transphosphorylation by the wild-type receptor (WT) were deficient in Q1152 as compared with the transfected WT receptors. Insulin-stimulated kinase activity toward poly(Glu, Tyr) 4:1 and the endogenous substrates p120 and p175 were also impaired in Q1152. However, insulin-independent kinase activity of Q1152 was 2-5-fold higher than that of WT. While insulin stimulated 2-deoxyglucose uptake and glycogen synthase activity in WT-transfected cells with a sensitivity proportional to receptor number, no insulin stimulation was observed in Q1152 cells. Similar to the kinase, insulin-independent glycogen synthase activity and 2-deoxyglucose uptake were 2-fold higher in Q1152 than in either WT or parental cells. We conclude that the Q1152 mutation deregulates insulin receptor kinase and generates insulin insensitivity in cells. Alterations in this highly conserved region of the insulin receptor may contribute to non-insulin dependent diabetes mellitin pathogenesis in humans

    On the Morphology and Chemical Composition of the HR 4796A Debris Disk

    Get PDF
    [abridged] We present resolved images of the HR 4796A debris disk using the Magellan adaptive optics system paired with Clio-2 and VisAO. We detect the disk at 0.77 \microns, 0.91 \microns, 0.99 \microns, 2.15 \microns, 3.1 \microns, 3.3 \microns, and 3.8 \microns. We find that the deprojected center of the ring is offset from the star by 4.76±\pm1.6 AU and that the deprojected eccentricity is 0.06±\pm0.02, in general agreement with previous studies. We find that the average width of the ring is 14−2+3^{+3}_{-2}%, also comparable to previous measurements. Such a narrow ring precludes the existence of shepherding planets more massive than \about 4 \mj, comparable to hot-start planets we could have detected beyond \about 60 AU in projected separation. Combining our new scattered light data with archival HST/STIS and HST/NICMOS data at \about 0.5-2 \microns, along with previously unpublished Spitzer/MIPS thermal emission data and all other literature thermal data, we set out to constrain the chemical composition of the dust grains. After testing 19 individual root compositions and more than 8,400 unique mixtures of these compositions, we find that good fits to the scattered light alone and thermal emission alone are discrepant, suggesting that caution should be exercised if fitting to only one or the other. When we fit to both the scattered light and thermal emission simultaneously, we find mediocre fits (reduced chi-square \about 2). In general, however, we find that silicates and organics are the most favored, and that water ice is usually not favored. These results suggest that the common constituents of both interstellar dust and solar system comets also may reside around HR 4796A, though improved modeling is necessary to place better constraints on the exact chemical composition of the dust.Comment: Accepted to ApJ on October 27, 2014. 21 pages, 12 figures, 4 table

    Numerical renormalization group of vortex aggregation in 2D decaying turbulence: the role of three-body interactions

    Full text link
    In this paper, we introduce a numerical renormalization group procedure which permits long-time simulations of vortex dynamics and coalescence in a 2D turbulent decaying fluid. The number of vortices decreases as N∼t−ξN\sim t^{-\xi}, with ξ≈1\xi\approx 1 instead of the value ξ=4/3\xi=4/3 predicted by a na\"{\i}ve kinetic theory. For short time, we find an effective exponent ξ≈0.7\xi\approx 0.7 consistent with previous simulations and experiments. We show that the mean square displacement of surviving vortices grows as ∼t1+ξ/2\sim t^{1+\xi/2}. Introducing effective dynamics for two-body and three-body collisions, we justify that only the latter become relevant at small vortex area coverage. A kinetic theory consistent with this mechanism leads to ξ=1\xi=1. We find that the theoretical relations between kinetic parameters are all in good agreement with experiments.Comment: 23 RevTex pages including 7 EPS figures. Submitted to Phys. Rev. E (Some typos corrected; see also cond-mat/9911032
    • …
    corecore