14,785 research outputs found

    Chiral corrections to baryon properties with composite pions

    Full text link
    A calculational scheme is developed to evaluate chiral corrections to properties of composite baryons with composite pions. The composite baryons and pions are bound states derived from a microscopic chiral quark model. The model is amenable to standard many-body techniques such as the BCS and RPA formalisms. An effective chiral model involving only hadronic degrees of freedom is derived from the macroscopic quark model by projection onto hadron states. Chiral loops are calculated using the effective hadronic Hamiltonian. A simple microscopic confining interaction is used to illustrate the derivation of the pion-nucleon form factor and the calculation of pionic self-energy corrections to the nucleon and Delta(1232) masses.Comment: 29 pages, Revtex, 4 ps figure

    Magnetocaloric effect in integrable spin-s chains

    Full text link
    We study the magnetocaloric effect for the integrable antiferromagnetic high-spin chain. We present an exact computation of the Gr\"uneisen parameter, which is closely related to the magnetocaloric effect, for the quantum spin-s chain on the thermodynamical limit by means of Bethe ansatz techniques and the quantum transfer matrix approach. We have also calculated the entropy S and the isentropes in the (H,T) plane. We have been able to identify the quantum critical points H_c^{(s)}=2/(s+1/2) looking at the isentropes and/or the characteristic behaviour of the Gr\"uneisen parameter.Comment: 6 pages, 3 figure

    Transport properties of a two impurity system: a theoretical approach

    Get PDF
    A system of two interacting cobalt atoms, at varying distances, was studied in a recent scanning tunneling microscope experiment by Bork et. al.[Nature Phys. 7, 901 (2011)]. We propose a microscopic model that explains, for all experimentally analyzed interatomic distances, the physics observed in these experiments. Our proposal is based on the two-impurity Anderson model, with the inclusion of a two-path geometry for charge transport. This many-body system is treated in the finite-U slave boson mean-field approximation and the logarithmic-discretization embedded-cluster approximation. We physically characterize the different charge transport regimes of this system at various interatomic distances and show that, as in the experiments, the features observed in the transport properties depend on the presence of two impurities but also on the existence of two conducting channels for electron transport. We interpret the splitting observed in the conductance as the result of the hybridization of the two Kondo resonances associated with each impurity.Comment: 5 pages, 5 figure

    Are the anti-charmed and bottomed pentaquarks molecular heptaquarks?

    Full text link
    I study the charmed uuddcˉuudd\bar c resonance D*p (3100) very recently discovered by the H1 collaboration at Hera. An anticharmed resonance was already predicted, in a recent publication mostly dedicated to the S=1 resonance Theta+(1540). To confirm these recent predictions, I apply the same standard quark model with a quark-antiquark annihilation constrained by chiral symmetry. I find that repulsion excludes the D*p (3100) as a uuddcˉuudd\bar c s-wave pentaquark. I explore the D*p (3100) as a heptaquark, equivalent to a N-pi-D* linear molecule, with positive parity and total isospin I=0. I find that the N-D repulsion is cancelled by the attraction existing in the N-pi and pi-D channels. In our framework this state is harder to bind than the Theta+ described by a k-pi-N borromean bound-state, a lower binding energy is expected in agreement with the H1 observation. Multiquark molecules N-pi-D, N-pi-B* and N-pi-B are also predicted.Comment: 5 pages, 2 figures, RevTe

    Coherent Adiabatic Spin Control in the Presence of Charge Noise Using Tailored Pulses

    Full text link
    We study finite-time Landau-Zener transitions at a singlet-triplet level crossing in a GaAs double quantum dot, both experimentally and theoretically. Sweeps across the anticrossing in the high driving speed limit result in oscillations with a small visibility. Here we demonstrate how to increase the oscillation visibility while keeping sweep times shorter than T2* using a tailored pulse with a detuning dependent level velocity. Our results show an improvement of a factor ~2.9 for the oscillation visibility. In particular, we were able to obtain a visibility of ~0.5 for St\"uckelberg oscillations, which demonstrates the creation of an equally weighted superposition of the qubit states.Comment: Related papers at http://pettagroup.princeton.ed

    The Apparent Fractal Conjecture: Scaling Features in Standard Cosmologies

    Full text link
    This paper presents an analysis of the smoothness problem in cosmology by focussing on the ambiguities originated in the simplifying hypotheses aimed at observationally verifying if the large-scale distribution of galaxies is homogeneous, and conjecturing that this distribution should follow a fractal pattern in perturbed standard cosmologies. This is due to a geometrical effect, appearing when certain types of average densities are calculated along the past light cone. The paper starts reviewing the argument concerning the possibility that the galaxy distribution follows such a scaling pattern, and the premises behind the assumption that the spatial homogeneity of standard cosmology can be observable. Next, it is argued that to discuss observable homogeneity one needs to make a clear distinction between local and average relativistic densities, and showing how the different distance definitions strongly affect them, leading the various average densities to display asymptotically opposite behaviours. Then the paper revisits Ribeiro's (1995: astro-ph/9910145) results, showing that in a fully relativistic treatment some observational average densities of the flat Friedmann model are not well defined at z ~ 0.1, implying that at this range average densities behave in a fundamentally different manner as compared to the linearity of the Hubble law, well valid for z < 1. This conclusion brings into question the widespread assumption that relativistic corrections can always be neglected at low z. It is also shown how some key features of fractal cosmologies can be found in the Friedmann models. In view of those findings, it is suggested that the so-called contradiction between the cosmological principle, and the galaxy distribution forming an unlimited fractal structure, may not exist.Comment: 30 pages, 2 figures, LaTeX. This paper is a follow-up to gr-qc/9909093. Accepted for publication in "General Relativity and Gravitation
    • …
    corecore