We study finite-time Landau-Zener transitions at a singlet-triplet level
crossing in a GaAs double quantum dot, both experimentally and theoretically.
Sweeps across the anticrossing in the high driving speed limit result in
oscillations with a small visibility. Here we demonstrate how to increase the
oscillation visibility while keeping sweep times shorter than T2* using a
tailored pulse with a detuning dependent level velocity. Our results show an
improvement of a factor ~2.9 for the oscillation visibility. In particular, we
were able to obtain a visibility of ~0.5 for St\"uckelberg oscillations, which
demonstrates the creation of an equally weighted superposition of the qubit
states.Comment: Related papers at http://pettagroup.princeton.ed