21,040 research outputs found

    NoSOCS in SDSS. VI. The Environmental Dependence of AGN in Clusters and Field in the Local Universe

    Full text link
    We investigated the variation in the fraction of optical active galactic nuclei (AGN) hosts with stellar mass, as well as their local and global environments. Our sample is composed of cluster members and field galaxies at z0.1z \le 0.1 and we consider only strong AGN. We find a strong variation in the AGN fraction (FAGNF_{AGN}) with stellar mass. The field population comprises a higher AGN fraction compared to the global cluster population, especially for objects with log M>10.6M_* > 10.6. Hence, we restricted our analysis to more massive objects. We detected a smooth variation in the FAGNF_{AGN} with local stellar mass density for cluster objects, reaching a plateau in the field environment. As a function of clustercentric distance we verify that FAGNF_{AGN} is roughly constant for R >> R200_{200}, but show a steep decline inwards. We have also verified the dependence of the AGN population on cluster velocity dispersion, finding a constant behavior for low mass systems (σP650700\sigma_P \lesssim 650-700 km s1^{-1}). However, there is a strong decline in FAGNF_{AGN} for higher mass clusters (>> 700 km s1^{-1}). When comparing the FAGNF_{AGN} in clusters with or without substructure we only find different results for objects at large radii (R >> R200_{200}), in the sense that clusters with substructure present some excess in the AGN fraction. Finally, we have found that the phase-space distribution of AGN cluster members is significantly different than other populations. Due to the environmental dependence of FAGNF_{AGN} and their phase-space distribution we interpret AGN to be the result of galaxy interactions, favored in environments where the relative velocities are low, typical of the field, low mass groups or cluster outskirts.Comment: 11 pages, 10 figures, Accepted to MNRA

    Nonlinear gyrofluid computation of edge localised ideal ballooning modes

    Full text link
    Three dimensional electromagnetic gyrofluid simulations of the ideal ballooning mode blowout scenario for tokamak edge localized modes (ELMs) are presented. Special emphasis is placed on energetic diagnosis, examining changes in the growth rate in the linear, overshoot, and decay phases. The saturation process is energy transfer to self generated edge turbulence which exhibits an ion temperature gradient (ITG) mode structure. Convergence in the decay phase is found only if the spectrum reaches the ion gyroradius. The equilibrium is a self consistent background whose evolution is taken into account. Approximately two thirds of the total energy in the edge layer is liberated in the blowout. Parameter dependence with respect to plasma pressure and the ion gyroradius is studied. Despite the violent nature of the short-lived process, the transition to nonlinearity is very similar to that found in generic tokamak edge turbulence.Comment: The following article has been submitted to Physics of Plasmas. After it is published, it will be found at http://pop.aip.org

    Dogmatism and Theoretical Pluralism in Modern Cosmology

    Get PDF
    This work discusses the presence of a dogmatic tendency within modern cosmology, and some ideas capable of neutralizing its negative influence. It is verified that warnings about the dangers of dogmatic thinking in cosmology can be found as early as the 1930's, and we discuss the modern appearance of "scientific dogmatism". The solution proposed to counteract such an influence, which is capable of neutralizing this dogmatic tendency, has its origins in the philosophical thinking of the Austrian physicist Ludwig Boltzmann (1844-1906). In particular we use his two main epistemological theses, scientific theories as representations of nature and theoretical pluralism, to show that once they are embodied in the research practice of modern cosmology, there is no longer any reason for dogmatic behaviours.Comment: 14 pages; LaTeX sourc

    Boltzmann's Concept of Reality

    Full text link
    In this article we describe and analyze the concept of reality developed by the Austrian theoretical physicist Ludwig Boltzmann. It is our thesis that Boltzmann was fully aware that reality could, and actually was, described by different points of view. In spite of this, Boltzmann did not renounce the idea that reality is real. We also discuss his main motivations to be strongly involved with philosophy of science, as well as further developments made by Boltzmann himself of his main philosophical ideas, namely scientific theories as images of Nature and its consequences. We end the paper with a discussion about the modernity of Boltzmann's philosophy of science.Comment: 13 pages, pdf only. To appear in the book on Ludwig Boltzmann scientific philosophy, published by Nova Science. Edited by A. Eftekhar

    Fractal analysis of the galaxy distribution in the redshift range 0.45 < z < 5.0

    Get PDF
    Evidence is presented that the galaxy distribution can be described as a fractal system in the redshift range of the FDF galaxy survey. The fractal dimension DD was derived using the FDF galaxy volume number densities in the spatially homogeneous standard cosmological model with Ωm0=0.3\Omega_{m_0}=0.3, ΩΛ0=0.7\Omega_{\Lambda_0}=0.7 and H_0=70 \; \mbox{km} \; {\mbox{s}}^{-1} \; {\mbox{Mpc}}^{-1}. The ratio between the differential and integral number densities γ\gamma and γ\gamma^\ast obtained from the red and blue FDF galaxies provides a direct method to estimate DD, implying that γ\gamma and γ\gamma^\ast vary as power-laws with the cosmological distances. The luminosity distance dLd_{\scriptscriptstyle L}, galaxy area distance dGd_{\scriptscriptstyle G} and redshift distance dzd_z were plotted against their respective number densities to calculate DD by linear fitting. It was found that the FDF galaxy distribution is characterized by two single fractal dimensions at successive distance ranges. Two straight lines were fitted to the data, whose slopes change at z1.3z \approx 1.3 or z1.9z \approx 1.9 depending on the chosen cosmological distance. The average fractal dimension calculated using γ\gamma^\ast changes from D=1.40.6+0.7\langle D \rangle=1.4^{\scriptscriptstyle +0.7}_{\scriptscriptstyle -0.6} to D=0.50.4+1.2\langle D \rangle=0.5^{\scriptscriptstyle +1.2}_{\scriptscriptstyle -0.4} for all galaxies, and DD decreases as zz increases. Small values of DD at high zz mean that in the past galaxies were distributed much more sparsely and the large-scale galaxy structure was then possibly dominated by voids. Results of Iribarrem et al. (2014, arXiv:1401.6572) indicating similar fractal features with D=0.6±0.1\langle D \rangle =0.6 \pm 0.1 in the far-infrared sources of the Herschel/PACS evolutionary probe (PEP) at 1.5z3.21.5 \lesssim z \lesssim 3.2 are also mentioned.Comment: LaTex, 15 pages, 28 figures, 4 tables. To appear in "Physica A
    corecore