571 research outputs found

    EU-funded malaria research under the 6th and 7th Framework Programmes for research and technological development

    Get PDF
    While malaria research has traditionally been strong in Europe, targeted and sustained support for cooperative malaria research at EU level, namely through the EU's 6th and 7th Framework Programmes for research and technological development, FP6 (2002-2006) and FP7 (2007-2013), has boosted both impact and visibility of European malaria research. Most of the European malaria research community is now organized under a number of comprehensive and complementary research networks and projects, assembled around four key areas: (1) fundamental research on the malaria parasite and the disease, (2) development of new malaria drugs, (3) research and development of a malaria vaccine, and (4) research to control the malaria-transmitting mosquito vector. Considerable efforts were undertaken to ensure adequate participation of research groups from disease-endemic countries, in particular from Africa, with the long-term aim to strengthen cooperative links and research capacities in these countries. The concept of organizing European research through major strategic projects to form a "European Research Area" (ERA) was originally developed in the preparation of FP6, and ERA formation has now turned into a major EU policy objective explicitly inscribed into the Lisbon Treaty. EU-funded malaria research may serve as a showcase to demonstrate how ERA formation can successfully be implemented in a given area of science when several surrounding parameters converge to support implementation of this strategic concept: timely coincidence of political stimuli, responsive programming, a clearly defined - and well confined - area of research, and the readiness of the targeted research community who is well familiar with transnational cooperation at EU level. Major EU-funded malaria projects have evolved into thematic and organizational platforms that can collaborate with other global players. Europe may thus contribute more, and better, to addressing the global research agenda for malaria

    Expression analysis of mammaglobin A (SCGB2A2) and lipophilin B (SCGB1D2) in more than 300 human tumors and matching normal tissues reveals their co-expression in gynecologic malignancies

    Get PDF
    BACKGROUND: Mammaglobin A (SCGB2A2) and lipophilin B (SCGB1D2), two members of the secretoglobin superfamily, are known to be co-expressed in breast cancer, where their proteins form a covalent complex. Based on the relatively high tissue-specific expression pattern, it has been proposed that the mammaglobin A protein and/or its complex with lipophilin B could be used in breast cancer diagnosis and treatment. In view of these clinical implications, the aim of the present study was to analyze the expression of both genes in a large panel of human solid tumors (n = 309), corresponding normal tissues (n = 309) and cell lines (n = 11), in order to evaluate their tissue specific expression and co-expression pattern. METHODS: For gene and protein expression analyses, northern blot, dot blot hybridization of matched tumor/normal arrays (cancer profiling arrays), quantitative RT-PCR, non-radioisotopic RNA in situ hybridization and immunohistochemistry were used. RESULTS: Cancer profiling array data demonstrated that mammaglobin A and lipophilin B expression is not restricted to normal and malignant breast tissue. Both genes were abundantly expressed in tumors of the female genital tract, i.e. endometrial, ovarian and cervical cancer. In these four tissues the expression pattern of mammaglobin A and lipophilin B was highly concordant, with both genes being down-, up- or not regulated in the same tissue samples. In breast tissue, mammaglobin A expression was down-regulated in 49% and up-regulated in 12% of breast tumor specimens compared with matching normal tissues, while lipophilin B was down-regulated in 59% and up-regulated in 3% of cases. In endometrial tissue, expression of mammaglobin A and lipophilin B was clearly up-regulated in tumors (47% and 49% respectively). Both genes exhibited down-regulation in 22% of endometrial tumors. The only exceptions to this concordance of mammaglobin A/lipophilin B expression were normal and malignant tissues of prostate and kidney, where only lipophilin B was abundantly expressed and mammaglobin A was entirely absent. RNA in situ hybridization and immunohistochemistry confirmed expression of mammaglobin A on a cellular level in endometrial and cervical cancer and their corresponding normal tissues. CONCLUSION: Altogether, these data suggest that expression of mammaglobin A and lipophilin B might be controlled in different tissues by the same regulatory transcriptional mechanisms. Diagnostic assays based on mammaglobin A expression and/or the mammaglobin A/lipophilin B complex appear to be less specific for breast cancer, but with a broader spectrum of potential applications, which includes gynecologic malignancies

    Rapid Global Expansion of Invertebrate Fisheries: Trends, Drivers, and Ecosystem Effects

    Get PDF
    BACKGROUND: Worldwide, finfish fisheries are receiving increasing assessment and regulation, slowly leading to more sustainable exploitation and rebuilding. In their wake, invertebrate fisheries are rapidly expanding with little scientific scrutiny despite increasing socio-economic importance. METHODS AND FINDINGS: We provide the first global evaluation of the trends, drivers, and population and ecosystem consequences of invertebrate fisheries based on a global catch database in combination with taxa-specific reviews. We also develop new methodologies to quantify temporal and spatial trends in resource status and fishery development. Since 1950, global invertebrate catches have increased 6-fold with 1.5 times more countries fishing and double the taxa reported. By 2004, 34% of invertebrate fisheries were over-exploited, collapsed, or closed. New fisheries have developed increasingly rapidly, with a decrease of 6 years (3 years) in time to peak from the 1950s to 1990s. Moreover, some fisheries have expanded further and further away from their driving market, encompassing a global fishery by the 1990s. 71% of taxa (53% of catches) are harvested with habitat-destructive gear, and many provide important ecosystem functions including habitat, filtration, and grazing. CONCLUSIONS: Our findings suggest that invertebrate species, which form an important component of the basis of marine food webs, are increasingly exploited with limited stock and ecosystem-impact assessments, and enhanced management attention is needed to avoid negative consequences for ocean ecosystems and human well-being

    The Rossiter-McLaughlin effect in Exoplanet Research

    Full text link
    The Rossiter-McLaughlin effect occurs during a planet's transit. It provides the main means of measuring the sky-projected spin-orbit angle between a planet's orbital plane, and its host star's equatorial plane. Observing the Rossiter-McLaughlin effect is now a near routine procedure. It is an important element in the orbital characterisation of transiting exoplanets. Measurements of the spin-orbit angle have revealed a surprising diversity, far from the placid, Kantian and Laplacian ideals, whereby planets form, and remain, on orbital planes coincident with their star's equator. This chapter will review a short history of the Rossiter-McLaughlin effect, how it is modelled, and will summarise the current state of the field before describing other uses for a spectroscopic transit, and alternative methods of measuring the spin-orbit angle.Comment: Review to appear as a chapter in the "Handbook of Exoplanets", ed. H. Deeg & J.A. Belmont

    Dissemination of Metarhizium anisopliae of low and high virulence by mating behavior in Aedes aegypti

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dengue is a viral disease transmitted by <it>Aedes </it>mosquitoes. It is a threat for public health worldwide and its primary vector <it>Aedes aegypti </it>is becoming resistant to chemical insecticides. These factors have encouraged studies to evaluate entomopathogenic fungi against the vector. Here we evaluated mortality, infection, insemination and fecundity rates in <it>A. aegypti </it>females after infection by autodissemination with two Mexican strains of <it>Metarhizium anisopliae</it>.</p> <p>Methods</p> <p>Two <it>M. anisopliae </it>strains were tested: The Ma-CBG-1 least virulent (lv), and the Ma-CBG-2 highly virulent (hv) strain. The lv was tested as non mosquito-passed (NMP), and mosquito-passed (MP), while the hv was examined only as MP version, therefore including the control four treatments were used. In the first bioassay virulence of fungal strains towards female mosquitoes was determined by indirect exposure for 48 hours to conidia-impregnated paper. In the second bioassay autodissemination of fungal conidia from fungus-contaminated males to females was evaluated. Daily mortality allowed computation of survival curves and calculation of the LT<sub>50 </sub>by the Kaplan-Meier model. All combinations of fungal sporulation and mating insemination across the four treatments were analyzed by χ<sup>2</sup>. The mean fecundity was analyzed by ANOVA and means contrasted with the Ryan test.</p> <p>Results</p> <p>Indirect exposure to conidia allowed a faster rate of mortality, but exposure to a fungal-contaminated male was also an effective method of infecting female mosquitoes. All females confined with the hv strain-contaminated male died in fifteen days with a LT<sub>50 </sub>of 7.57 (± 0.45) where the control was 24.82 (± 0.92). For the lv strain, it was possible to increase fungal virulence by passing the strain through mosquitoes. 85% of females exposed to hv-contaminated males became infected and of them just 10% were inseminated; control insemination was 46%. The hv strain reduced fecundity by up to 99%, and the lv strain caused a 40% reduction in fecundity.</p> <p>Conclusions</p> <p>The hv isolate infringed a high mortality, allowed a low rate of insemination, and reduced fecundity to nearly zero in females confined with a fungus-contaminated male. This pathogenic impact exerted through sexual transmission makes the hv strain of <it>M. anisopliae </it>worthy of further research.</p

    Whisker touch guides canopy exploration in a nocturnal, arboreal rodent, the Hazel dormouse (Muscardinus avellanarius)

    Get PDF
    Dormouse numbers are declining in the UK due to habitat loss and fragmentation. We know that dormice are nocturnal, arboreal, and avoid crossing open spaces between habitats, yet how they navigate around their canopy is unknown. As other rodents use whisker touch sensing to navigate and explore their environment, this study investigates whether Hazel dormice (Muscardinus avellanarius) employ their whiskers to cross between habitats. We analysed high-speed video footage of dormice exploring freely in flat and climbing arenas in near darkness and using infrared light illumination. We confirm that, like rats and mice, dormice move their whiskers back and forth continuously (~10 Hz) in a motion called whisking and recruit them to explore small gaps (<10 cm) by increasing the amplitude and frequency of whisking and also the asymmetry of movement between the left and right whisker fields. When gaps between platforms are larger than 10-15 cm dormice spend more time travelling on the floor. These findings suggest that dormice can actively and purposively move their whiskers to gather relevant information from their canopy at night. As this species is vulnerable to threats on the ground, we also provide evidence that joining habitat patches between dormouse populations is important for promoting natural behaviours and movement between patches

    Novel Murine Infection Models Provide Deep Insights into the “Ménage à Trois” of Campylobacter jejuni, Microbiota and Host Innate Immunity

    Get PDF
    BACKGROUND: Although Campylobacter jejuni-infections have a high prevalence worldwide and represent a significant socioeconomic burden, it is still not well understood how C. jejuni causes intestinal inflammation. Detailed investigation of C. jejuni-mediated intestinal immunopathology is hampered by the lack of appropriate vertebrate models. In particular, mice display colonization resistance against this pathogen. METHODOLOGY/PRINCIPAL FINDINGS: To overcome these limitations we developed a novel C. jejuni-infection model using gnotobiotic mice in which the intestinal flora was eradicated by antibiotic treatment. These animals could then be permanently associated with a complete human (hfa) or murine (mfa) microbiota. After peroral infection C. jejuni colonized the gastrointestinal tract of gnotobiotic and hfa mice for six weeks, whereas mfa mice cleared the pathogen within two days. Strikingly, stable C. jejuni colonization was accompanied by a pro-inflammatory immune response indicated by increased numbers of T- and B-lymphocytes, regulatory T-cells, neutrophils and apoptotic cells, as well as increased concentrations of TNF-α, IL-6, and MCP-1 in the colon mucosa of hfa mice. Analysis of MyD88(-/-), TRIF(-/-), TLR4(-/-), and TLR9(-/-) mice revealed that TLR4- and TLR9-signaling was essential for immunopathology following C. jejuni-infection. Interestingly, C. jejuni-mutant strains deficient in formic acid metabolism and perception induced less intestinal immunopathology compared to the parental strain infection. In summary, the murine gut flora is essential for colonization resistance against C. jejuni and can be overcome by reconstitution of gnotobiotic mice with human flora. Detection of C. jejuni-LPS and -CpG-DNA by host TLR4 and TLR9, respectively, plays a key role in immunopathology. Finally, the host immune response is tightly coupled to bacterial formic acid metabolism and invasion fitness. CONCLUSION/SIGNIFICANCE: We conclude that gnotobiotic and "humanized" mice represent excellent novel C. jejuni-infection and -inflammation models and provide deep insights into the immunological and molecular interplays between C. jejuni, microbiota and innate immunity in human campylobacteriosis
    corecore