51 research outputs found
A high-velocity black hole on a Galactic-halo orbit in the solar neighborhood
Only a few of the dozen or so stellar-mass black holes have been observed
away from the plane of the Galaxy. Those few could have been ejected from
the plane as a result of a ``kick'' received during a supernova explosion, or
they could be remnants of the population of massive stars formed in the early
stages of evolution of the Galaxy. Determining their orbital motion should help
to distinguish between these options. Here we report the transverse motion (in
the plane of the sky) for the black hole X-ray nova XTE J1118+480 (refs 2-5),
from which we derive a large space velocity. This X-ray binary has an eccentric
orbit around the Galactic Centre, like most objects in the halo of the Galaxy,
such as ancient stars and globular clusters. The properties of the system
suggest that its age is comparable to or greater than the age of the Galactic
disk. Only an extraordinary ``kick'' from a supernova could have launched the
black hole into an orbit like this from a birth place in the disk of the
Galaxy.Comment: 8 pages including 2 color figures. Additional figures and animation
in http://www.iafe.uba.ar/astronomia/FM/mirabel.htm
New Insights into X-ray Binaries
X-ray binaries are excellent laboratories to study collapsed objects. On the
one hand, transient X-ray binaries contain the best examples of stellar-mass
black holes while persistent X-ray binaries mostly harbour accreting neutron
stars. The determination of stellar masses in persistent X-ray binaries is
usually hampered by the overwhelming luminosity of the X-ray heated accretion
disc. However, the discovery of high-excitation emission lines from the
irradiated companion star has opened new routes in the study of compact
objects. This paper presents novel techniques which exploits these irradiated
lines and summarises the dynamical masses obtained for the two populations of
collapsed stars: neutron stars and black holes.Comment: 12 pages, 5 figures, 2 tables, Invited review to plenary session in
"Highlights of Spanish Astrophysics V", Proceedings of the VIII Scientific
Meeting of the Spanish Astronomical Society (SEA) held in Santander, 7-11
July, 2008. Edited by J. Gorgas, L. J. Goicoechea, J. I. Gonzalez-Serrano, J.
M. Dieg
Sulfhydryl Modification Induces Calcium Entry through IP3-Sensitive Store-Operated Pathway in Activation-Dependent Human Neutrophils
As the first line of host defense, neutrophils are stimulated by pro-inflammatory cytokines from resting state, facilitating the execution of immunomodulatory functions in activation state. Sulfhydryl modification has a regulatory role in a wide variety of physiological functions through mediation of signaling transductions in various cell types. Recent research suggested that two kinds of sulfhydryl modification, S-nitrosylation by exogenous nitric oxide (NO) and alkylation by N-ethylmaleimide (NEM), could induce calcium entry through a non-store-operated pathway in resting rat neutrophils and DDT1MF-2 cells, while in active human neutrophils a different process has been observed by us. In the present work, data showed that NEM induced a sharp rising of cytosolic calcium concentration ([Ca2+]c) without external calcium, followed by a second [Ca2+]c increase with readdition of external calcium in phorbol 12-myristate 13-acetate (PMA)-activated human neutrophils. Meanwhile, addition of external calcium did not cause [Ca2+]c change of Ca2+-free PMA-activated neutrophils before application of NEM. These data indicated that NEM could induce believable store-operated calcium entry (SOCE) in PMA-activated neutrophils. Besides, we found that sodium nitroprusside (SNP), a donor of exogenous NO, resulted in believable SOCE in PMA-activated human neutrophils via S-nitrosylation modification. In contrast, NEM and SNP have no effect on [Ca2+]c of resting neutrophils which were performed in suspension. Furthermore, 2-Aminoethoxydiphenyl borate, a reliable blocker of SOCE and an inhibitor of inositol 1,4,5-trisphosphate (IP3) receptor, evidently abolished SNP and NEM-induced calcium entry at 75 µM, while preventing calcium release in a concentration-dependent manner. Considered together, these results demonstrated that NEM and SNP induced calcium entry through an IP3-sensitive store-operated pathway of human neutrophils via sulfhydryl modification in a PMA-induced activation-dependent manner
Adolescent Brain Development and the Risk for Alcohol and Other Drug Problems
Dynamic changes in neurochemistry, fiber architecture, and tissue composition occur in the adolescent brain. The course of these maturational processes is being charted with greater specificity, owing to advances in neuroimaging and indicate grey matter volume reductions and protracted development of white matter in regions known to support complex cognition and behavior. Though fronto-subcortical circuitry development is notable during adolescence, asynchronous maturation of prefrontal and limbic systems may render youth more vulnerable to risky behaviors such as substance use. Indeed, binge-pattern alcohol consumption and comorbid marijuana use are common among adolescents, and are associated with neural consequences. This review summarizes the unique characteristics of adolescent brain development, particularly aspects that predispose individuals to reward seeking and risky choices during this phase of life, and discusses the influence of substance use on neuromaturation. Together, findings in this arena underscore the importance of refined research and programming efforts in adolescent health and interventional needs
Bi-allelic Loss-of-Function CACNA1B Mutations in Progressive Epilepsy-Dyskinesia.
The occurrence of non-epileptic hyperkinetic movements in the context of developmental epileptic encephalopathies is an increasingly recognized phenomenon. Identification of causative mutations provides an important insight into common pathogenic mechanisms that cause both seizures and abnormal motor control. We report bi-allelic loss-of-function CACNA1B variants in six children from three unrelated families whose affected members present with a complex and progressive neurological syndrome. All affected individuals presented with epileptic encephalopathy, severe neurodevelopmental delay (often with regression), and a hyperkinetic movement disorder. Additional neurological features included postnatal microcephaly and hypotonia. Five children died in childhood or adolescence (mean age of death: 9 years), mainly as a result of secondary respiratory complications. CACNA1B encodes the pore-forming subunit of the pre-synaptic neuronal voltage-gated calcium channel Cav2.2/N-type, crucial for SNARE-mediated neurotransmission, particularly in the early postnatal period. Bi-allelic loss-of-function variants in CACNA1B are predicted to cause disruption of Ca2+ influx, leading to impaired synaptic neurotransmission. The resultant effect on neuronal function is likely to be important in the development of involuntary movements and epilepsy. Overall, our findings provide further evidence for the key role of Cav2.2 in normal human neurodevelopment.MAK is funded by an NIHR Research Professorship and receives funding from the Wellcome Trust, Great Ormond Street Children's Hospital Charity, and Rosetrees Trust. E.M. received funding from the Rosetrees Trust (CD-A53) and Great Ormond Street Hospital Children's Charity. K.G. received funding from Temple Street Foundation. A.M. is funded by Great Ormond Street Hospital, the National Institute for Health Research (NIHR), and Biomedical Research Centre. F.L.R. and D.G. are funded by Cambridge Biomedical Research Centre. K.C. and A.S.J. are funded by NIHR Bioresource for Rare Diseases. The DDD Study presents independent research commissioned by the Health Innovation Challenge Fund (grant number HICF-1009-003), a parallel funding partnership between the Wellcome Trust and the Department of Health, and the Wellcome Trust Sanger Institute (grant number WT098051). We acknowledge support from the UK Department of Health via the NIHR comprehensive Biomedical Research Centre award to Guy's and St. Thomas' National Health Service (NHS) Foundation Trust in partnership with King's College London. This research was also supported by the NIHR Great Ormond Street Hospital Biomedical Research Centre. J.H.C. is in receipt of an NIHR Senior Investigator Award. The research team acknowledges the support of the NIHR through the Comprehensive Clinical Research Network. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, Department of Health, or Wellcome Trust. E.R.M. acknowledges support from NIHR Cambridge Biomedical Research Centre, an NIHR Senior Investigator Award, and the University of Cambridge has received salary support in respect of E.R.M. from the NHS in the East of England through the Clinical Academic Reserve. I.E.S. is supported by the National Health and Medical Research Council of Australia (Program Grant and Practitioner Fellowship)
- …