16 research outputs found
Evidence for Mito-Nuclear and Sex-Linked Reproductive Barriers between the Hybrid Italian Sparrow and Its Parent Species
Studies of reproductive isolation between homoploid hybrid species and their parent species have rarely been carried out. Here we investigate reproductive barriers between a recently recognized hybrid bird species, the Italian sparrow Passer italiae and its parent species, the house sparrow P. domesticus and Spanish sparrow P. hispaniolensis. Reproductive barriers can be difficult to study in hybrid species due to lack of geographical contact between taxa. However, the Italian sparrow lives parapatrically with the house sparrow and both sympatrically and parapatrically with the Spanish sparrow. Through whole-transcriptome sequencing of six individuals of each of the two parent species we identified a set of putatively parent species-diagnostic single nucleotide polymorphism (SNP) markers. After filtering for coverage, genotyping success (>97%) and multiple SNPs per gene, we retained 86 species-informative, genic, nuclear and mitochondrial SNP markers from 84 genes for analysis of 612 male individuals. We show that a disproportionately large number of sex-linked genes, as well as the mitochondria and nuclear genes with mitochondrial function, exhibit sharp clines at the boundaries between the hybrid and the parent species, suggesting a role for mito-nuclear and sex-linked incompatibilities in forming reproductive barriers. We suggest that genomic conflict via interactions between mitochondria and sex-linked genes with mitochondrial function ("mother's curse") at one boundary and centromeric drive at the other may best explain our findings. Hybrid speciation in the Italian sparrow may therefore be influenced by mechanisms similar to those involved in non-hybrid speciation, but with the formation of two geographically separated species boundaries instead of one. Spanish sparrow alleles at some loci have spread north to form reproductive barriers with house sparrows, while house sparrow alleles at different loci, including some on the same chromosome, have spread in the opposite direction to form barriers against Spanish sparrows
PPARδ Activation Acts Cooperatively with 3-Phosphoinositide-Dependent Protein Kinase-1 to Enhance Mammary Tumorigenesis
Peroxisome proliferator-activated receptorδ (PPARδ) is a transcription factor that is associated with metabolic gene regulation and inflammation. It has been implicated in tumor promotion and in the regulation of 3-phosphoinositide-dependent kinase-1 (PDK1). PDK1 is a key regulator of the AGC protein kinase family, which includes the proto-oncogene AKT/PKB implicated in several malignancies, including breast cancer. To assess the role of PDK1 in mammary tumorigenesis and its interaction with PPARδ, transgenic mice were generated in which PDK1 was expressed in mammary epithelium under the control of the MMTV enhancer/promoter region. Transgene expression increased pT308AKT and pS9GSK3β, but did not alter phosphorylation of mTOR, 4EBP1, ribosomal protein S6 and PKCα. The transgenic mammary gland also expressed higher levels of PPARδ and a gene expression profile resembling wild-type mice maintained on a diet containing the PPARδ agonist, GW501516. Both wild-type and transgenic mice treated with GW501516 exhibited accelerated rates of tumor formation that were more pronounced in transgenic animals. GW501516 treatment was accompanied by a distinct metabolic gene expression and metabolomic signature that was not present in untreated animals. GW501516-treated transgenic mice expressed higher levels of fatty acid and phospholipid metabolites than treated wild-type mice, suggesting the involvement of PDK1 in enhancing PPARδ-driven energy metabolism. These results reveal that PPARδ activation elicits a distinct metabolic and metabolomic profile in tumors that is in part related to PDK1 and AKT signaling
Zinc Coordination Is Required for and Regulates Transcription Activation by Epstein-Barr Nuclear Antigen 1
Epstein-Barr Nuclear Antigen 1 (EBNA1) is essential for Epstein-Barr virus to immortalize naïve B-cells. Upon binding a cluster of 20 cognate binding-sites termed the family of repeats, EBNA1 transactivates promoters for EBV genes that are required for immortalization. A small domain, termed UR1, that is 25 amino-acids in length, has been identified previously as essential for EBNA1 to activate transcription. In this study, we have elucidated how UR1 contributes to EBNA1's ability to transactivate. We show that zinc is necessary for EBNA1 to activate transcription, and that UR1 coordinates zinc through a pair of essential cysteines contained within it. UR1 dimerizes upon coordinating zinc, indicating that EBNA1 contains a second dimerization interface in its amino-terminus. There is a strong correlation between UR1-mediated dimerization and EBNA1's ability to transactivate cooperatively. Point mutants of EBNA1 that disrupt zinc coordination also prevent self-association, and do not activate transcription cooperatively. Further, we demonstrate that UR1 acts as a molecular sensor that regulates the ability of EBNA1 to activate transcription in response to changes in redox and oxygen partial pressure (pO2). Mild oxidative stress mimicking such environmental changes decreases EBNA1-dependent transcription in a lymphoblastoid cell-line. Coincident with a reduction in EBNA1-dependent transcription, reductions are observed in EBNA2 and LMP1 protein levels. Although these changes do not affect LCL survival, treated cells accumulate in G0/G1. These findings are discussed in the context of EBV latency in body compartments that differ strikingly in their pO2 and redox potential
Geographic variation in social organization of Galápagos mockingbirds: ecological correlates of group territoriality and cooperative breeding
To investigate ecological influences on cooperative social organization, I studied the four allopatric species of mockingbirds ( Nesomimus spp.) endemic to the Galápagos archipelago on four islands. On three small, low and arid islands (Genovesa, Champion and Española), mockingbird territories filled all terrestrial habitat, mean group size varied from 4.5 to 14.2 adults, maximum group size ranged from seven to 24 birds, and 70–100% of groups contained more than two birds. San Cristóbal is larger and higher, and it supports a broader range of habitats. At one highland and two coastal sites on this island, mockingbirds did not hold territories in all available habitats, group size averaged 2.2 adults, only 25% of groups were larger than two, and none included more than three adults. Adults dispersed into vacant habitat to establish new territories only on San Cristóbal. Helping behavior has not yet been observed on San Cristóbal, but it occurs on the other three islands. These results support the hypothesis that social groups and cooperative breeding are maintained where limited availability of preferred habitat constrains dispersal. The mechanism relaxing habitat saturation on San Cristóbal, however, remains undetermined. Predation by introduced rats and cats may reduce survival and indirectly reduce group size; these predators are absent from Genovesa, Champion and Española. Differences in food supplies could also affect interand intra-island variation in population density. Variation in social organization among arid coastal sites on the four islands, and similarity between climatically different sites on San Cristóbal, suggest that climatic conditions are less important as determinants of dispersal and breeding. Skews in adult sex ratios also fail to account for inter-island variation in sociality. Although they live in a climatically variable environment, territorial behavior and the physical limits of suitable habitat have an overriding influence on cooperative social organization in Galápagos mockingbirds.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46894/1/265_2004_Article_BF00302932.pd
