9 research outputs found

    Genetic and environmental components of variation in eumelanin and phaeomelanin sex-traits in the barn owl

    Get PDF
    Knowledge of the mechanism underlying the expression of melanin-based sex-traits may help us to understand their signalling function. Potential sources of inter-individual variation are the total amount of melanins produced but also how biochemical precursors are allocated into the eumelanin and phaeomelanin pigments responsible for black and reddish-brown colours, respectively. In the barn owl (Tyto alba), a eumelanin trait (referred to as ā€˜plumage spottinessā€™) signals immunocompetence towards an artificially administrated antigen and parasite resistance in females, whereas a phaeomelanin trait (ā€˜plumage colorationā€™) signals investment in reproduction in males. This raises the question whether plumage coloration and spottiness are expressed independent of each other. To investigate this question, we have studied the genetics of these two plumage traits. Crossfostering experiments showed that, for each trait, phenotypic variation has a strong genetic component, whereas no environmental component could be detected. Plumage coloration is autosomally inherited, as suggested by the similar paternal-to-maternal contribution to offspring coloration. In contrast, plumage spottiness may be sex-linked inherited (in birds, females are heterogametic). That proposition arises from the observation that sons resembled their mother more than their father and that daughters resembled only their father. Despite plumage coloration and spottiness signalling different qualities, these two traits are not inherited independent of each other, darker birds being spottier. This suggests that the extent to which coloration and spottiness are expressed depends on the total amount of melanin produced (with more melanin leading to a both darker and spottier plumage) rather than on differential allocation of melanin into plumage coloration and spottiness (in such a case, darker birds should have been less spotted). A gene controlling the production of melanin pigments may be located on sex-chromosomes, since the phenotypic correlation between coloration and spottiness was stronger in males than in females.

    The molecular basis of chromosome orthologies and sex chromosomal differentiation in palaeognathous birds

    Get PDF
    Palaeognathous birds (Struthioniformes and Tinamiformes) have morphologically conserved karyotypes and less differentiated ZW sex chromosomes. To delineate interspecific chromosome orthologies in palaeognathous birds we conducted comparative chromosome painting with chicken (Gallus gallus, GGA) chromosome 1-9 and Z chromosome paints (GGA1-9 and GGAZ) for emu, double-wattled cassowary, ostrich, greater rhea, lesser rhea and elegant crested tinamou. All six species showed the same painting patterns: each probe was hybridized to a single pair of chromosomes with the exception that the GGA4 was hybridized to the fourth largest chromosome and a single pair of microchromosomes. The GGAZ was also hybridized to the entire region of the W chromosome, indicating that extensive homology remains between the Z and W chromosomes on the molecular level. Comparative FISH mapping of four Z- and/or W-linked markers, the ACO1/IREBP, ZOV3 and CHD1 genes and the EE0.6 sequence, revealed the presence of a small deletion in the proximal region of the long arm of the W chromosome in greater rhea and lesser rhea. These results suggest that the karyotypes and sex chromosomes of palaeognathous birds are highly conserved not only morphologically, but also at the molecular level; moreover, palaeognathous birds appear to retain the ancestral lineage of avian karyotypes
    corecore