73 research outputs found

    The test characteristics of head circumference measurements for pathology associated with head enlargement: a retrospective cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The test characteristics of head circumference (HC) measurement percentile criteria for the identification of previously undetected pathology associated with head enlargement in primary care are unknown.</p> <p>Methods</p> <p>Electronic patient records were reviewed to identify children age 3 days to 3 years with new diagnoses of intracranial expansive conditions (IEC) and metabolic and genetic conditions associated with macrocephaly (MGCM). We tested the following HC percentile threshold criteria: ever above the 95<sup>th</sup>, 97<sup>th</sup>, or 99.6<sup>th </sup>percentile and ever crossing 2, 4, or 6 increasing major percentile lines. The Centers for Disease Control and World Health Organization growth curves were used, as well as the primary care network (PCN) curves previously derived from this cohort.</p> <p>Results</p> <p>Among 74,428 subjects, 85 (0.11%) had a new diagnosis of IEC (n = 56) or MGCM (n = 29), and between these 2 groups, 24 received intervention. The 99.6<sup>th </sup>percentile of the PCN curve was the only threshold with a PPV over 1% (PPV 1.8%); the sensitivity of this threshold was only 15%. Test characteristics for the 95th percentiles were: sensitivity (CDC: 46%; WHO: 55%; PCN: 40%), positive predictive value (PPV: CDC: 0.3%; WHO: 0.3%; PCN: 0.4%), and likelihood ratios positive (LR+: CDC: 2.8; WHO: 2.2; PCN: 3.9). Test characteristics for the 97th percentiles were: sensitivity (CDC: 40%; WHO: 48%; PCN: 34%), PPV (CDC: 0.4%; WHO: 0.3%; PCN: 0.6%), and LR+ (CDC: 3.6; WHO: 2.7; PCN: 5.6). Test characteristics for crossing 2 increasing major percentile lines were: sensitivity (CDC: 60%; WHO: 40%; PCN: 31%), PPV (CDC: 0.2%; WHO: 0.1%; PCN: 0.2%), and LR+ (CDC: 1.3; WHO: 1.1; PCN: 1.5).</p> <p>Conclusions</p> <p>Commonly used HC percentile thresholds had low sensitivity and low positive predictive value for diagnosing new pathology associated with head enlargement in children in a primary care network.</p

    Biochemical Properties of Highly Neuroinvasive Prion Strains

    Get PDF
    Infectious prions propagate from peripheral entry sites into the central nervous system (CNS), where they cause progressive neurodegeneration that ultimately leads to death. Yet the pathogenesis of prion disease can vary dramatically depending on the strain, or conformational variant of the aberrantly folded and aggregated protein, PrPSc. Although most prion strains invade the CNS, some prion strains cannot gain entry and do not cause clinical signs of disease. The conformational basis for this remarkable variation in the pathogenesis among strains is unclear. Using mouse-adapted prion strains, here we show that highly neuroinvasive prion strains primarily form diffuse aggregates in brain and are noncongophilic, conformationally unstable in denaturing conditions, and lead to rapidly lethal disease. These neuroinvasive strains efficiently generate PrPSc over short incubation periods. In contrast, the weakly neuroinvasive prion strains form large fibrillary plaques and are stable, congophilic, and inefficiently generate PrPSc over long incubation periods. Overall, these results indicate that the most neuroinvasive prion strains are also the least stable, and support the concept that the efficient replication and unstable nature of the most rapidly converting prions may be a feature linked to their efficient spread into the CNS

    Evaluating Human-Robot Interaction with Ethology

    No full text
    International audienceEvaluating human-robot interactions to improve them is a major challenge. Several scientific approaches are commonly used. Here, we propose that ethology, science of behaviors, could be a suitable discipline to study such question. After explanations, some examples are given to illustrate these possibilities
    corecore