105 research outputs found

    C-type natriuretic peptide is a pivotal regulator of metabolic homeostasis

    Get PDF
    Thermogenesis and adipogenesis are tightly regulated mechanisms that maintain lipid homeostasis and energy balance; dysfunction of these critical processes underpins obesity and contributes to cardiometabolic disease. C-type natriuretic peptide (CNP) fulfills a multimodal protective role in the cardiovascular system governing local blood flow, angiogenesis, cardiac function, and immune cell reactivity. Herein, we investigated a parallel, preservative function for CNP in coordinating metabolic homeostasis. Global inducible CNP knockout mice exhibited reduced body weight, higher temperature, lower adiposity, and greater energy expenditure in vivo. This thermogenic phenotype was associated with increased expression of uncoupling protein-1 and preferential lipid utilization by mitochondria, a switch corroborated by a corresponding diminution of insulin secretion and glucose clearance. Complementary studies in isolated murine and human adipocytes revealed that CNP exerts these metabolic regulatory actions by inhibiting sympathetic thermogenic programming via G(i)-coupled natriuretic peptide receptor (NPR)-C and reducing peroxisome proliferator-activated receptor-γ coactivator-1α expression, while concomitantly driving adipogenesis via NPR-B/protein kinase-G. Finally, we identified an association between CNP/NPR-C expression and obesity in patient samples. These findings establish a pivotal physiological role for CNP as a metabolic switch to balance energy homeostasis. Pharmacological targeting of these receptors may offer therapeutic utility in the metabolic syndrome and related cardiovascular disorders

    Role of HDAC3 on p53 Expression and Apoptosis in T Cells of Patients with Multiple Sclerosis

    Get PDF
    Background: Histone deacetylase 3 (HDAC3) belongs to a family of proteins which plays an important role in protein acetylation, chromatin remodeling and transcription of genes, including those that are involved in cell proliferation and cell death. While increased expression of HDAC3 is seen in neoplastic cells, the role of HDAC3 in T cells and their role in autoimmune disease is not known. Methodology/Principal Findings: Applying Affymetrix GeneChip Human Gene 1.0 ST Array and the mixed effects model for gene set analysis, we compared gene expression profiles between multiple sclerosis (MS) patients and healthy controls (HC). Within the Apoptosis_GO gene set, the constitutive expression level of HDAC3 in peripheral blood mononuclear cell (PBMC) was significantly increased in MS patients when compared to controls. Following addition of trichostatin A (TSA), an inhibitor of HDAC3, we examined the expression of p53 by flow cytometry and p53 targeted genes by real time RT-PCR in MS and HC. Culture of PBMC with TSA resulted in increased expression of p53 in HC but not in MS patients. TSA treated T cells from MS patients also showed reduced sensitivity to apoptosis when compared to HC, which was independent of activation of p53 targeted pro-apoptotic genes. Conclusion/Significance: MS patients, when compared to controls, show an increased expression of HDAC3 and relative resistance to TSA induced apoptosis in T cells. Increased expression of HDAC3 in PBMC of MS patients may render putativ

    Neonatal Overfeeding Induced by Small Litter Rearing Causes Altered Glucocorticoid Metabolism in Rats

    Get PDF
    Elevated glucocorticoid (GC) activity may be involved in the development of the metabolic syndrome. Tissue GC exposure is determined by the tissue-specific GC-activating enzyme 11ÎČ-hydroxysteriod dehydrogenase type 1 (11ÎČ-HSD1) and the GC-inactivating enzyme 5α-reductase type 1 (5αR1), as well as 5ÎČ-reductase (5ÎČR). Our aim was to study the effects of neonatal overfeeding induced by small litter rearing on the expression of GC-regulating enzymes in adipose tissue and/or liver and on obesity-related metabolic disturbances during development. Male Sprague-Dawley rat pup litters were adjusted to litter sizes of three (small litters, SL) or ten (normal litters, NL) on postnatal day 3 and then given standard chow from postnatal week 3 onward (W3). Small litter rearing induced obesity, hyperinsulinemia, and higher circulating corticosterone in adults. 11ÎČ-HSD1 expression and enzyme activity in retroperitoneal, but not in epididymal, adipose tissue increased with postnatal time and peaked at W5/W6 in both groups before declining. From W8, 11ÎČ-HSD1 expression and enzyme activity levels in retroperitoneal fat persisted at significantly higher levels in SL compared to NL rats. Hepatic 11ÎČ-HSD1 enzyme activity in SL rats was elevated from W3 to W16 compared to NL rats. Hepatic 5αR1 and 5ÎČR expression was higher in SL compared to NL rats after weaning until W6, whereupon expression decreased in the SL rats and remained similar to that in NL rats. In conclusion, small litter rearing in rats induced peripheral tissue-specific alterations in 11ÎČ-HSD1 expression and activity and 5αR1 and 5ÎČR expression during puberty, which could contribute to elevated tissue-specific GC exposure and aggravate the development of metabolic dysregulation in adults

    Estrogens protect male mice from obesity complications and influence glucocorticoid metabolism

    Get PDF
    BACKGROUND: Although the prevalence of obesity is higher among women than men, they are somewhat protected from the associated cardiometabolic consequences. The increase in cardiovascular disease risk seen after the menopause suggests a role for estrogens. There is also growing evidence for the importance of estrogen on body fat and metabolism in males. We hypothesized that that estrogen administration would ameliorate the adverse effects of obesity on metabolic parameters in males. METHODS: Male and female C57Bl/6 mice were fed control or obesogenic (DIO) diets from 5 weeks of age until adulthood. Glucose tolerance testing was performed at 13 weeks of age. Mice were killed at 15 weeks of age and liver and adipose tissue were collected for analysis of gene expression. A second cohort of male mice underwent the same experimental design with the addition of estradiol pellet implantation or sham surgery at 6 weeks. RESULTS: DIO males had greater mesenteric adipose deposition and more severe increases in plasma glucose, insulin and lipids than females. Treatment of males with estradiol from 6 weeks of age prevented DIO-induced increases in adipose tissue mass and alterations in glucose–insulin homeostasis. We also identified sex differences in the transcript levels and activity of hepatic and adipose glucocorticoid metabolizing enzymes. Estrogen treatment feminized the pattern of DIO-induced changes in glucocorticoid metabolism, rendering males similar to females. CONCLUSIONS: Thus, DIO induces sex-specific changes in glucose–insulin homeostasis, which are ameliorated in males treated with estrogen, highlighting the importance of sex steroids in metabolism. Given that altered peripheral glucocorticoid metabolism has been observed in rodent and human obesity, our results also suggest that sexually dimorphic expression and activity of glucocorticoid metabolizing enzymes may have a role in the differential metabolic responses to obesity in males and females

    Hypoxia determines survival outcomes of bacterial infection through HIF-1alpha dependent re-programming of leukocyte metabolism.

    Get PDF
    Hypoxia and bacterial infection frequently co-exist, in both acute and chronic clinical settings, and typically result in adverse clinical outcomes. To ameliorate this morbidity, we investigated the interaction between hypoxia and the host response. In the context of acute hypoxia, both S. aureus and S. pneumoniae infections rapidly induced progressive neutrophil mediated morbidity and mortality, with associated hypothermia and cardiovascular compromise. Preconditioning animals through longer exposures to hypoxia, prior to infection, prevented these pathophysiological responses and profoundly dampened the transcriptome of circulating leukocytes. Specifically, perturbation of HIF pathway and glycolysis genes by hypoxic preconditioning was associated with reduced leukocyte glucose utilisation, resulting in systemic rescue from a global negative energy state and myocardial protection. Thus we demonstrate that hypoxia preconditions the innate immune response and determines survival outcomes following bacterial infection through suppression of HIF-1α and neutrophil metabolism. The therapeutic implications of this work are that in the context of systemic or tissue hypoxia therapies that target the host response could improve infection associated morbidity and mortality.This work was supported by the Medical Research Council (MRC) Clinical Training Fellowship (awards G0802255 and MR/K023845/1 to A.A.R.T. and R.S.D., respectively), a National Institute for Health Research (NIHR) Clinical Lectureship and an Academy of Medical Sciences starter grant (to A.A.R.T.), a Wellcome Trust postdoctoral clinical fellowship (110086 to A.M.), a Wellcome Trust Senior Clinical Fellowship award (098516 to S.R.W.), a Wellcome Trust Senior Clinical Fellowship award (076945 to D.H.D.), a British Lung Foundation Fellowship (F05/7 to H.M.M.), a Wellcome Trust New Investigator Award (WT100981MA to N.M.M.), and a British Heart Foundation Senior Basic Science Research Fellowship (FS/13/48/30453 to A.L.). E.R.C. and A.S.C. are supported by the NIHR Cambridge Biomedical Research Centre. R.H.S. is supported by the MRC. R.R.M. is supported by MRC (MC_PC_U127574433), Biotechnology and Biological Sciences Research Council, and European Chemical Industry Council grants. M.M. is supported by the European Research Council (OxyMO). The MRC/University of Edinburgh Centre for Inflammation Research is supported by an MRC Centre Grant

    Medicinal and ethnoveterinary remedies of hunters in Trinidad

    Get PDF
    BACKGROUND: Ethnomedicines are used by hunters for themselves and their hunting dogs in Trinidad. Plants are used for snakebites, scorpion stings, for injuries and mange of dogs and to facilitate hunting success. RESULTS: Plants used include Piper hispidum, Pithecelobium unguis-cati, Bauhinia excisa, Bauhinia cumanensis, Cecropia peltata, Aframomum melegueta, Aristolochia rugosa, Aristolochia trilobata, Jatropha curcas, Jatropha gossypifolia, Nicotiana tabacum, Vernonia scorpioides, Petiveria alliacea, Renealmia alpinia, Justicia secunda, Phyllanthus urinaria,Phyllanthus niruri,Momordica charantia, Xiphidium caeruleum, Ottonia ovata, Lepianthes peltata, Capsicum frutescens, Costus scaber, Dendropanax arboreus, Siparuma guianensis, Syngonium podophyllum, Monstera dubia, Solanum species, Eclipta prostrata, Spiranthes acaulis, Croton gossypifolius, Barleria lupulina, Cola nitida, Acrocomia ierensis (tentative ID). CONCLUSION: Plant use is based on odour, and plant morphological characteristics and is embedded in a complex cultural context based on indigenous Amerindian beliefs. It is suggested that the medicinal plants exerted a physiological action on the hunter or his dog. Some of the plants mentioned contain chemicals that may explain the ethnomedicinal and ethnoveterinary use. For instance some of the plants influence the immune system or are effective against internal and external parasites. Plant baths may contribute to the health and well being of the hunting dogs

    Access to highly active antiretroviral therapy for injection drug users: adherence, resistance, and death

    Full text link
    • 

    corecore