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HYPERTENSION AND METABOLIC SYNDROME (J SPERATI, SECTION EDITOR)

11β-Hydroxysteroid Dehydrogenases and Hypertension
in the Metabolic Syndrome

Matthew A. Bailey1

# The Author(s) 2017. This article is an open access publication

Abstract The metabolic syndrome describes a clustering of
risk factors—visceral obesity, dyslipidaemia, insulin resis-
tance, and salt-sensitive hypertension—that increases mortal-
ity related to cardiovascular disease, type 2 diabetes, cancer,
and non-alcoholic fatty liver disease. The prevalence of these
concurrent comorbidities is ~ 25–30% worldwide, and meta-
bolic syndrome therefore presents a significant global public
health burden. Evidence from clinical and preclinical studies
indicates that glucocorticoid excess is a key causal feature of
metabolic syndrome. This is not increased systemic in circu-
lating cortisol, rather increased bioavailability of active gluco-
corticoids within tissues. This review examines the role of
covert glucocorticoid excess on the hypertension of the meta-
bolic syndrome. Here, the role of the 11β-hydroxysteroid de-
hydrogenase enzymes, which exert intracrine and paracrine
control over glucocorticoid signalling, is examined.
11βHSD1 amplifies glucocorticoid action in cells and contrib-
utes to hypertension through direct and indirect effects on the
kidney and vasculature. The deactivation of glucocorticoid by
11βHSD2 controls ligand access to glucocorticoid and min-
eralocorticoid receptors: loss of function promotes salt reten-
tion and hypertension. As for hypertension in general, high
blood pressure in the metabolic syndrome reflects a complex
interaction between multiple systems. The clear association

between high dietary salt, glucocorticoid production, and met-
abolic disorders has major relevance for human health and
warrants systematic evaluation.

Keywords Metabolic syndrome . 11β-Hydroxysteroid
dehydrogenases . Hypertension . Glucocorticoid excess . Salt
retention . Salt-sensitivity . Aldosterone . Cortisol

Introduction

The metabolic syndrome describes a concurrence of interre-
lated abnormalities, including visceral obesity, dyslipidaemia,
insulin resistance, and hypertension. Each of these features
independently carries significant cardiovascular risk. In com-
bination, the risk is amplified, and all-cause mortality in-
creases: metabolic syndrome predicts the development of type
2 diabetes, cardiovascular disease, cancer, and non-alcoholic
fatty liver disease [1]. Although a single, unifying definition of
metabolic syndrome is lacking, the prevalence of these con-
current comorbidities is ~ 25–30% worldwide [2], presenting
a significant global public health burden [3].

Metabolic syndrome is more useful as an epidemiologic
tool for analysing cardiovascular risk than it is as a clinical
entity requiring specialist management above and beyond
management of individual components. For example, hyper-
tension is one of the cardinal features of metabolic syndrome,
but the origins of high blood pressure are obscure and lost in
the complexity of the syndrome. Clearly metabolic syndrome
captures a cluster of pathophysiological features that are indi-
vidually accepted as “pro-hypertensive”: renal dysfunction
and sodium retention [4], vascular [5] and microvascular dys-
function [6], activation of the renin-angiotensin-aldosterone
system [7], sympathetic overdrive [8], and oxidative stress
[9]. These have all been described in metabolic syndrome
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patients (and in animal models), as they have for uncomplicat-
ed hypertension. Indeed, as for uncomplicated hypertension, it
is unlikely that any individual component is “causal”, and
there is no distinct blood pressure management strategy for
metabolic syndrome patients. Lifestyle and nutritional inter-
ventions to increase calorific outflow and lower salt intake
are advocated, but adherence is poor, and blood pressure con-
trol requires early therapeutic intervention [10]. Nevertheless,
there are interesting aspects to metabolic syndrome that may
offer a route to improve blood pressure control.
Glucocorticoids are important regulators of metabolism.
Although rare, the systemic glucocorticoid excess of Cushing
syndrome displays the same key features as metabolic syn-
drome [11]. Although circulating cortisol is not elevated in
most patients with metabolic syndrome, “glucocorticoid ex-
cess” is a complex concept and may instead reflect instead
amplification of cellular bioavailability [12•], enhance
frequency/amplitude of pulsatile release over the 24-h cycle
[13], and/or alter relationship of circadian/ultradian rhythms
to external cues [14••].

This review focusses on covert glucocorticoid excess and
the role of local glucocorticoid metabolism by the isozymes
11β hydroxysteroid dehydrogenase types 1 and 2 (11βHSD1
and 11βHSD2). 11βHSD1 and 11βHSD2 are products of
distinct genes and members of the dehydrogenase/reductase
superfamily. Here, the preclinical and clinical data connecting
the activity of these enzymes to blood pressure homeostasis is
discussed, concluding by addressing the potential therapeutic
relevance to the management of patients with the metabolic
syndrome.

11βHSDs and Glucocorticoid Signalling

Plasma concentrations of active glucocorticoid (cortisol in
humans; corticosterone in rodents) are determined by the bal-
ance between synthesis and clearance, and by the high-affinity
binding of glucocorticoids to circulating corticosteroid-binding
globulin. Glucocorticoids are synthesised in the zona fasiculata
of the adrenal cortex in response to ACTH, described as the
hypothalamic-pituitary-adrenal axis (HPAA). In peripheral tis-
sues, particularly adipose, liver, skeletal muscle, and kidney,
glucocorticoids can be regenerated from inactive 11-keto deriv-
atives (cortisone in humans; 11-dehydrocorticosterone in ro-
dents) by 11βHSD1 (see [12•] for review). Systemic cortisol
clearance is primarily mediated by hepatic 5α- and 5β-reduc-
tases, with a significant contribution from 11βHSD2 in the
distal nephron of the kidney, which converts active glucocorti-
coids into inactive metabolites (Fig. 1).

The 11βHSD enzymes have conventionally been regarded
as regulators of glucocorticoid function at a cell level, but they
do exert endocrine influence. Thus, circulating concentration
of glucocorticoid is not affected by deletion of 11βHSD2 [15],

but the half-life of cortisol is increased in patients with null
mutations in the encoding gene, HSD11B2. The effect of
11βHSD1 deletion is also nuanced, appearing as abnormal
circadian control of HPAA drive [16]. Micro-dialysis studies
suggest that 11βHSDs buffer tissue concentration of gluco-
corticoid, dissociating this from circulating levels throughout
the circadian cycle [17]. Thus, tissue glucocorticoid signalling
may be quasi-independent from systemic glucocorticoid sta-
tus [18]. Mass Spectroscopy imaging is now allowing us to
open the black box and peer into tissues: such approaches will
significantly advance our understanding of the spatial-
temporal regulation of glucocorticoid within tissues and per-
haps ultimately cells [19].

Nevertheless, a solely “cellular” view lacks nuance: in
humans, 11βHSD1 activity contributes to the postprandial
rise in plasma cortisol [20] and in mice 11βHSD2 activity
influences the relationship between dietary salt intake and
circulating corticosterone [21]. Moreover, gene-targeting
strategies in rodents and clinical studies in man clearly dem-
onstrate that these cellular enzymes exert a significant impact
on systemic phenotypes, including adiposity and hyperten-
sion, discussed below.

Hypertension in Systemic Glucocorticoid Excess

Iatrogenic or endogenous glucocorticoid excess induces hy-
pertension in humans [22], recapitulated in mice models of
chronic corticosterone [23•] and ACTH [24] infusion.
Suppression of the endogenous diurnal variation causes a loss
of nocturnal blood pressure dipping, even when glucocorti-
coid stays within the physiological range [25•]. The aetiology
and treatment of hypertension in Cushing syndrome has been
extensively reviewed [26]. Mechanistically, chronic (5-day)
infusion of either ACTH or cortisol into healthy men causes
antinatriuresis and volume expansion [27]. Studies in mice
show activation of sodium reabsorption in the aldosterone-
sensitive distal nephron via ENaC [24] and NCC, the
thiazide-sensitive cotransporter [25•]. However, conditional
deletion of GR in the distal nephron does not blunt the hyper-
tensive response to chronic dexamethasone [28] (a synthetic
glucocorticoid) and long-term glucocorticoid excess causes
volume contraction rather than expansion. Here, hypertension
is maintained by vasoconstriction due to enhanced sympathet-
ic outflow and increased vasopressin [24]: mice with condi-
tional deletion of GR in the vascular endothelium are partially
protected against dexamethasone-hypertension [29].
Nevertheless, it is likely that blood pressure control by the
kidney is impaired: the combination of glucocorticoid and
sympathetic excess induces salt-sensitive hypertension in oth-
erwise healthy rodents due to epigenetic modification of
WNK4 kinase that regulates sodium transport in the distal
tubule NCC [30••].
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Stable hypertension in ACTH or glucocorticoids excess is
often associated with electrolyte abnormalities (e.g. hypoka-
lemia) suggestive of aldosterone excess and in mice ACTH
induces increased renal transcription of aldosterone-response
genes such as sgk1 and that encoding αENaC, scnn1 [31]. As
expected, ACTH excess activates gene networks in the adre-
nal gland that promote steroidogenesis [32], but the effect on
circulating aldosterone is transient; the glucocorticoid re-
sponse is sustained. Thus, GR-mediated pathways are impli-
cated in ACTH-dependent hypertension. MR pathways may
come into play if glucocorticoids are sufficiently elevated to
breach the 11βHSD2 barrier, as is suggested in human
Cushing syndrome [33], or if precursors with mineralocorti-
coid activity, such as deoxycorticosterone, are elevated to car-
diovascular significance [34]. In mice with ACTH excess,
both GR and MR antagonism were required to normalise

blood pressure [24], and in human ACTH-dependent
Cushing, hypertension is often more responsive to mifepris-
tone (RU486) than to MR antagonism [35]. GR antagonism
also offers cardiovascular benefits independent of blood pres-
sure control. In a novel rat model of metabolic syndrome,
generated by intercross between Dahl-salt-sensitive and
Zuker obese rats, RU486 reduced adiposity, 11βHSD1 ex-
pression in adipocytes and cardiomyocytes, and reduced car-
diac damage without affecting hypertension [36].

11βHSD1 and Hypertension

11βHSD1 is highly expressed in the key metabolic tissues of
liver, adipose, pancreas, and skeletal muscle. The role of
11βHSD1 in metabolism has been extensively studied from
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Fig. 1 Actions of the 11βHSD enzymes. The bioactivity of
glucocorticoid is regulated by enzymatic modification of the C11 side
chain. In humans, the reduced 11-hydroxy form cortisol (F) is
physiologically active at the mineralocorticoid receptor; the oxidised
11-keto form cortisone (E) is inert. The same is true in rodents for
active corticosterone (B) and inactive 11-dehydrocorticosterone (A).
Interconversion between the oxidised and reduced forms is catalysed by
two 11β-hydroxysteroid dehydrogenase (11βHSD) enzymes. 11βHSD1

operates as an NAPDH-dependent reductase, regenerating active
glucocorticoids in target tissues. It is co-expressed in the endoplasmic
reticulum with hexose-6-phosphate dehydrogenase (H6PDH), which
generates NADPH requisite for reductase activity. 11βHSD2 is a high-
affinity NAD+-dependent dehydrogenase, inactivating glucocorticoids
in vivo. The changes in redox potential that accompany NAD+

metabolism may lock MR-cortisol complexes in an inactive state
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a cellular basis in individual tissues through to impact upon an
integrated metabolic system [12•]. A consistent finding in
obese humans and rodents is that 11βHSD1 activity in sub-
cutaneous adipose more than doubles (e.g. [37, 38]). Increased
adipose 11βHSD1 and consequent intracellular glucocorti-
coid amplification is similarly reported in patients with meta-
bolic syndrome [39]. Transgenic approaches strongly evi-
dence the relationship between adipose 11βHSD1 and meta-
bolic disease: global knockout mice have a favourable meta-
bolic phenotype, even when obese [40] and adipose-specific
deletion protects mice against the metabolic consequences of
circulating corticosterone excess [23•]. In contrast, transgenic
overexpression of the enzyme in adipocytes markedly en-
hances cellular glucocorticoid, without changing circulating
corticosterone levels, and induces a comprehensive metabolic
syndrome phenotype [41]. Importantly, these overexpressing
mice have the salt-sensitive hypertension and attenuation of
the normal sleep-phase dip [42], characteristic of the blood
pressure profile in human metabolic syndrome. In the mice,
cellular amplification of corticosterone increased production
of angiotensinogen by adipocytes, activating the systemic
RAAS [42]. Blood pressure was normalised with an angioten-
sin receptor blocker, and in metabolic syndrome patients,
ARBs offer a safe, effective, and well-tolerated means of
blood pressure control [10], with added benefit for other as-
pects of the syndrome [7].

It is of course challenging to ascribe absolute causality of
hypertension in a complex disorder, and several studies show
that non-adipose 11βHSD1 activity contributes to blood pres-
sure control. Human genetics studies associate the gain of
function rs846910 SNP in the HSD11B1 promotor with blood
pressure in non-obese people [43–45]. This SNP associates
with type 2 diabetes but not with the metabolic syndrome
[46], and such studies offer limited mechanistic insight.
However, 11βHSD1 is expressed in systems with a strong
influence on blood pressure homeostasis, including vascular
smoothmuscle cells. It is well-established that glucocorticoids
enhance the vasoconstrictor response to catecholamines, yet
global 11βHSD1 knockout did not reduce the contractile re-
sponse to phenylephrine in either the mesenteric artery
(resistance) or thoracic aorta [47]. Recent studies show that
11βHSD1 in perivascular fat, amplified in metabolic syn-
drome [48•], can influence vascular tone: sympathetic over
activation increased 11βHSD1 activity and glucocorticoid
amplification in perivascular fat, inducing induced endothelial
dysfunction in underlying vessels by activation of MR [49••].

The kidney contributes to long-term blood pressure control
through the pressure natriuresis, an integrated tubular-vascular
response that stabilises extracellular fluid volume [50].
11βHSD1 is expressed in the renal vasculature and in proxi-
mal and distal convoluted tubules, podocytes, macula densa
cells, and the interstitial cells of the medulla [51]. Knockdown
of 11βHSD1 activity in the rat renal medulla by targeted

siRNA delivery decreased the concentration of corticosterone
in the urine [52]. This indicates that 11βHSD1 operates as a
reductase in vivo despite the absence of H6PDH expression
here. Renal medullary upregulation of 11βHSD1 is critical to
the hypertensive response to high salt diet in Dahl salt-
sensitive rats, and knockdown by the local injection of
siRNA is antihypertensive [52]. The molecular mechanisms
connecting renal 11βHSD1 activity in the renal medulla to
salt-sensitive blood pressure are not resolved, but it is noted
that 11βHSD1 null mice are resistant to the hypertension in-
duced by systemic infusion of corticosterone [23•]. It is plau-
sible that 11βHSD1 regulates tubular sodium reabsorption by
generating active glucocorticoid, since the stimulatory effects
of moderate glucocorticoid excess are well-defined [53].
However, it is unlikely that the enzyme plays a major role in
physiological salt balance, since 11βHSD1 knockout mice
adapt perfectly well to dietary sodium restriction [54].

The mechanistic relationship between increased 11βHSD1
activity and disorders of metabolism provided a strong driver
for development of pharmacological inhibitors. Preclinical
studies showed that 11βHSD1 inhibitors lower systemic
blood pressure in obese spontaneously hypertensive rats
[55]. A blood pressure-lowering effect of a different inhibitor
was also observed in mice [56], but this was an off-target
benefit, since a similar antihypertensive action was observed
in 11βHSD1 knockout mice. In small clinical trials, selective
11βHSD1 inhibitors caused a modest reduction in blood pres-
sure as a secondary endpoint in patients with either type 2
diabetes or the metabolic syndrome [57•]. This was not statis-
tically significant when assessed as a primary endpoint in
obese patients [58].

11βHSD2 and Hypertension

Mineralocorticoid over-activity is often considered a major
factor in the hypertension of glucocorticoid excess.
Activation of MR by glucocorticoids is normally restricted
by the presence in certain cells of 11βHSD2, which convert
MR-active glucocorticoids to MR-inactive metabolites.
11βHSD2 is highly expressed in the kidney, defining the
aldosterone-sensitive distal nephron, and here, the activity of
the enzyme is certainly important for blood pressure control.
Congenital or acquired deficiency in 11βHSD2 causes the
syndrome of apparent mineralocorticoid excess (AME;
OMIM #218030), presenting with salt retention, potassium
wasting, and hypertension [51].

Renal 11βHSD2 activity is regulated by glucocorticoids. It
is downregulated following adrenalectomy and restored by
corticosterone replacement [59]. Such regulation of
11βHSD2 expression would defend against glucocorticoid-
driven sodium retention during periods of physiological glu-
cocorticoid excess. However, recent data from our lab indicate

 100 Page 4 of 9 Curr Hypertens Rep  (2017) 19:100 



that high doses of dexamethasone actually reduce renal
Hsd11b2 expression [51]. Studies in obese humans also find
impaired renal 11βHSD2 activity [60] due to downregulation
of gene expression [61]. Renal 11βHSD2 activity is the pri-
mary source of 11-dehydrocorticosterone, the substrate for
11βHSD1, and this supply role for peripheral glucocorticoid
amplification is metabolically significant [62••]. Thus, meta-
bolic disorders are caught between Scylla and Charybdis: re-
ducing 11βHSD2 activity is metabolically beneficial but

increases susceptibility to salt-sensitive hypertension, as dem-
onstrated in the 11βHSD2 knockout rat [15] and discussed
below.

In common with other Mendelian disorders, high blood
pressure in AME is thought to originate in the kidney [63].
Renal transplant reverses AME in humans [64]; selective de-
letion of 11βHSD2 in the renal tubule induces key features of
AME, including salt-sensitive hypertension [65••]. However,
this view is too simplistic. In the global 11βHSD2 knockout
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mouse, increased vascular tone, reflecting either a defect in
endothelial NO production [47] or enhanced sympathetic-
induced vasoconstriction [66], maintains hypertension even
when sodium balance is restored: activation of the MR target
protein ENaC, increases vascular stiffness in obesity [67]. In
the CNS, 11βHSD2 is expressed in a subset of neurons in the
nucleus of the solitary tract. These neurons are activated by
dietary salt restriction. Conditional deletion of 11βHSD2 in
the nucleus of the solitary tract does not change blood pressure
per se [68] but induces a powerful phenotypic switch from
salt-resistant to salt-sensitivity BP so that even modest in-
creases in dietary salt intake cause hypertension [69••]. The
switch to salt sensitivity is amplified by an abnormal salt ap-
petite: under free-choice regimens, CNS-knockout mice
ingested ~ 3 times more salt than controls [69••].

Mechanistically, null mutations in HSD11B2, or inhibition
of the enzyme by glycerrhetinic acid such as found in liquo-
rice [70], would permit activation of MR by cortisol (or cor-
ticosterone in rodent models), causing sodium retention [71]
due to enhanced reabsorption in the distal nephron via ENaC
[66, 72]. Hypertension develops, because HPAA activity is
not subject to negative feedback through volume/electrolyte
status. However, it is likely that 11βHSD2 in the distal neph-
ron does not act merely as a guardian of renal MR. For exam-
ple, high salt diet caused moderate glucocorticoid excess in
hsd11b2 heterozygote null mice, and salt-sensitive hyperten-
sion was prevented by GR blockade with RU486 rather than
by MR blockade with spironolactone [21, 73]. The relation-
ship between 11βHSD2, GR, and MR appears to be more
complex than previously thought, at least in the kidney.
Here, GR translocation to the cytoplasm is strongly influenced
by aldosterone, rather than by physiological levels of cortico-
sterone [74]. It may be that 11βHSD2 also determines the
function of GR in “aldosterone-sensitive” cell types. Indeed,
studies in a colonic cell line suggest that GR occupancy is a
pre-requisite for aldosterone-MR signalling [75]. MR and GR
share many of the post-receptor signalling pathways, and a
molecular framework for corticosteroid regulation of distal
nephron sodium transport—and the role of 11βHSD2 within
this framework—is currently being elucidated in our labora-
tory and in others.

The physiological ramifications of MR/GR interaction are
not clear, but it is likely that aldosterone and glucocorticoids
normally have mutually reinforcing roles. In a collecting duct
cell line, for example, aldosterone activation of MR controls
sodium transport during circadian cycles [76]. If aldosterone
rises, as seen during salt restriction, activation of GR by aldo-
sterone maximises sodium transport via ENaC. Furthermore,
ultradian fluctuations in circulating corticosterone, amplified
by renal 11βHSD1 activity, mean that local glucocorticoid
may periodically exceed the enzymatic capacity of
11βHSD2. Thus, at key times of the day, or after meals, sodi-
um transport may be physiologically regulated by

glucocorticoid. Clearly, this has implications for blood pres-
sure regulation in the metabolic syndrome, where local gluco-
corticoid excess may underpin enhanced sodium reabsorption
in the distal nephron. High-fat feeding to mice recapitulates
key features of metabolic syndrome. Impaired sodium excre-
tion and salt-sensitive hypertension reflect activation of
furosemide-sensitive NKCC2 [77] and NCC [78], rather than
ENaC [79].

Conclusions

Conditions associated with increased circulating or intracellu-
lar glucocorticoids are common and often associated with hy-
pertension. The metabolic syndrome exemplifies the com-
plexity of glucocorticoid-dependent hypertension: clinical in-
vestigation and studies in experimental models demonstrate
impairment of all the major homeostatic systems controlling
blood pressure (Fig. 2). A unifying factor is that hypertension
in the metabolic syndrome is commonly salt-sensitive. This
presents a major challenge for clinical management, since salt
intake is habitually high, and adherence to salt-restricted diets
is notoriously poor [80•]. Moreover, high salt diet itself alters
the dynamic regulation of the HPAA. In mice, this manifests
as an amplified diurnal peak and enhanced 24-h excretion of
corticosterone and metabolites, consistent with enhanced pro-
duction [21]. In Dahl salt-sensitive rats, high salt diet does not
enhance circulating corticosterone but does increase activity
of 11βHSD1 in adipocytes [81]. In humans, a direct relation-
ship between salt intake and glucocorticoid production is sug-
gested, also involving peripheral metabolism [82].
Importantly, this relationship between salt intake and gluco-
corticoid production predicted metabolic syndrome status
[83••]. This study was observational, and the association be-
tween dietary salt intake, cortisol production, and metabolic
disease cannot be regarded as causal. Nevertheless, these re-
lationships have implications for human health and disease
and warrant systematic evaluation.
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