30 research outputs found
DUNDRUM-2: Prospective validation of a structured professional judgment instrument assessing priority for admission from the waiting list for a forensic mental health hospital
<p>Abstract</p> <p>Background</p> <p>The criteria for deciding who should be admitted first from a waiting list to a forensic secure hospital are not necessarily the same as those for assessing need. Criteria were drafted qualitatively and tested in a prospective 'real life' observational study over a 6-month period.</p> <p>Methods</p> <p>A researcher rated all those presented at the weekly referrals meeting using the DUNDRUM-1 triage security scale and the DUNDRUM-2 triage urgency scale. The key outcome measure was whether or not the individual was admitted.</p> <p>Results</p> <p>Inter-rater reliability and internal consistency for the DUNDRUM-2 were acceptable. The DUNDRUM-1 triage security score and the DUNDRUM-2 triage urgency score correlated r = 0.663. At the time of admission, after a mean of 23.9 (SD35.9) days on the waiting list, those admitted had higher scores on the DUNDRUM-2 triage urgency scale than those not admitted, with no significant difference between locations (remand or sentenced prisoners, less secure hospitals) at the time of admission. Those admitted also had higher DUNDRUM-1 triage security scores. At baseline the receiver operating characteristic area under the curve for a combined score was the best predictor of admission while at the time of admission the DUNDRUM-2 triage urgency score had the largest AUC (0.912, 95% CI 0.838 to 0.986).</p> <p>Conclusions</p> <p>The triage urgency items and scale add predictive power to the decision to admit. This is particularly true in maintaining equitability between those referred from different locations.</p
c-Myc overexpression sensitises colon cancer cells to camptothecin-induced apoptosis
The proto-oncogene c-Myc is overexpressed in 70% of colorectal tumours and can modulate proliferation and apoptosis after cytotoxic insult. Using an isogenic cell system, we demonstrate that c-Myc overexpression in colon carcinoma LoVo cells resulted in sensitisation to camptothecin-induced apoptosis, thus identifying c-Myc as a potential marker predicting response of colorectal tumour cells to camptothecin. Both camptothecin exposure and c-Myc overexpression in LoVo cells resulted in elevation of p53 protein levels, suggesting a role of p53 in the c-Myc-imposed sensitisation to the apoptotic effects of camptothecin. This was confirmed by the ability of PFT-alpha, a specific inhibitor of p53, to attenuate camptothecin-induced apoptosis. p53 can induce the expression of p21(Waf1/Cip1), an antiproliferative protein that can facilitate DNA repair and drug resistance. Importantly, although camptothecin treatment markedly increased p21(Waf1/Cip1) levels in parental LoVo cells, this effect was abrogated in c-Myc-overexpressing derivatives. Targeted inactivation of p21(Waf1/Cip1) in HCT116 colon cancer cells resulted in significantly increased levels of apoptosis following treatment with camptothecin, demonstrating the importance of p21(Waf1/Cip1) in the response to this agent. Finally, cDNA microarray analysis was used to identify genes that are modulated in expression by c-Myc upregulation that could serve as additional markers predicting response to camptothecin. Thirty-four sequences were altered in expression over four-fold in two isogenic c-Myc-overexpressing clones compared to parental LoVo cells. Moreover, the expression of 10 of these genes was confirmed to be significantly correlated with response to camptothecin in a panel of 30 colorectal cancer cell lines
Pilot Study of the Association of the DDAH2 −449G Polymorphism with Asymmetric Dimethylarginine and Hemodynamic Shock in Pediatric Sepsis
Genetic variability in the regulation of the nitric oxide (NO) pathway may influence hemodynamic changes in pediatric sepsis. We sought to determine whether functional polymorphisms in DDAH2, which metabolizes the NO synthase inhibitor asymmetric dimethylarginine (ADMA), are associated with susceptibility to sepsis, plasma ADMA, distinct hemodynamic states, and vasopressor requirements in pediatric septic shock.In a prospective study, blood and buccal swabs were obtained from 82 patients ≤ 18 years (29 with severe sepsis/septic shock plus 27 febrile and 26 healthy controls). Plasma ADMA was measured using tandem mass spectrometry. DDAH2 gene was partially sequenced to determine the -871 6g/7 g insertion/deletion and -449G/C single nucleotide polymorphisms. Shock type ("warm" versus "cold") was characterized by clinical assessment. The -871 7g allele was more common in septic (17%) then febrile (4%) and healthy (8%) patients, though this was not significant after controlling for sex and race (p = 0.96). ADMA did not differ between -871 6g/7 g genotypes. While genotype frequencies also did not vary between groups for the -449G/C SNP (p = 0.75), septic patients with at least one -449G allele had lower ADMA (median, IQR 0.36, 0.30-0.41 µmol/L) than patients with the -449CC genotype (0.55, 0.49-0.64 µmol/L, p = 0.008) and exhibited a higher incidence of "cold" shock (45% versus 0%, p = 0.01). However, after controlling for race, the association with shock type became non-significant (p = 0.32). Neither polymorphism was associated with inotrope score or vasoactive infusion duration.The -449G polymorphism in the DDAH2 gene was associated with both low plasma ADMA and an increased likelihood of presenting with "cold" shock in pediatric sepsis, but not with vasopressor requirement. Race, however, was an important confounder. These results support and justify the need for larger studies in racially homogenous populations to further examine whether genotypic differences in NO metabolism contribute to phenotypic variability in sepsis pathophysiology
Asymmetric Dimethylarginine, Endothelial Nitric Oxide Bioavailability and Mortality in Sepsis
Background: Plasma concentrations of asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxidesynthase, are raised in patients with chronic vascular disease, causing increased cardiovascular risk and endothelialdysfunction, but the role of ADMA in acute inflammatory states is less well defined.Methods and Results: In a prospective longitudinal study in 67 patients with acute sepsis and 31 controls, digitalmicrovascular reactivity was measured by peripheral arterial tonometry and blood was collected at baseline and 2–4 dayslater. Plasma ADMA and L-arginine concentrations were determined by high performance liquid chromatography. Baselineplasma L-arginine: ADMA ratio was significantly lower in sepsis patients (median [IQR] 63 [45–103]) than in hospital controls(143 [123–166], p,0.0001) and correlated with microvascular reactivity (r = 0.34, R2 = 0.12, p = 0.02). Baseline plasma ADMAwas independently associated with 28-day mortality (Odds ratio [95% CI] for death in those in the highest quartile($0.66 mmol/L) = 20.8 [2.2–195.0], p = 0.008), and was independently correlated with severity of organ failure. Increase inADMA over time correlated with increase in organ failure and decrease in microvascular reactivity.Conclusions: Impaired endothelial and microvascular function due to decreased endothelial NO bioavailability is a potentialmechanism linking increased plasma ADMA with organ failure and death in sepsis
A specific cadherin phenotype may characterise the disseminating yet non-metastatic behaviour of pseudomyxoma peritonei
Pseudomyxoma peritonei (PMP) is a rare neoplasm of mainly appendiceal origin, characterised by excess intra-abdominal mucin production leading to high morbidity and mortality. While histological features are frequently indolent, this tumour disseminates aggressively throughout the abdominal cavity, yet seldom metastasises. This study determined the expression of several markers of colorectal differentiation (carcinoembryonic antigen (CEA), cytokeratins (CK20 and CK7), epithelial membrane antigen), mucin production (MUC-2, interleukin-9 (IL-9), IL-9 receptor (IL-9Rα)), and cell adhesion (N- and E-cadherin, vimentin) in PMP tissue (n=26) compared with expressions in normal colonic mucosa (n=19) and colorectal adenocarcinoma (n=26). Expressions of CEA and cytokeratins were similar for PMP as those in colorectal adenocarcinomas with the exception that the CK20−/CK7− pattern was rare in PMP (Fisher's exact test: P=0.001). Similarly, expressions of mucin-related proteins were comparable for adenocarcinoma and PMP, with the exception that IL-9 expression was uncommon in adenocarcinoma (P=0.009). Pseudomyxoma peritonei demonstrated a specific pattern of adhesion-related protein expressions of increased N-cadherin, reduced E-cadherin, and increased vimentin (P=0.004), a phenotype suggesting a possible epithelial–mesenchymal transition state. Primary PMP cell cultures were successfully maintained and demonstrated marker expressions similar to those seen in in vivo tissues. These early characterisation studies demonstrate similarities between PMP and colorectal adenocarcinoma, but also reveal a specific cadherin phenotype that may characterise the distinct non-metastasising behaviour of PMP, and form the basis for future mechanistic and therapy-targeting research
A Functional Variant of the Dimethylarginine Dimethylaminohydrolase-2 Gene Is Associated with Insulin Sensitivity
Background: Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of endothelial nitric oxide synthase, which was associated with insulin resistance. Dimethylarginine dimethylaminohydrolase (DDAH) is the major determinant of plasma ADMA. Examining data from the DIAGRAM+ (Diabetes Genetics Replication And Meta-analysis), we identified a variant (rs9267551) in the DDAH2 gene nominally associated with type 2 diabetes (P =3610 25). Methodology/Principal Findings: initially, we assessed the functional impact of rs9267551 in human endothelial cells (HUVECs), observing that the G allele had a lower transcriptional activity resulting in reduced expression of DDAH2 and decreased NO production in primary HUVECs naturally carrying it. We then proceeded to investigate whether this variant is associated with insulin sensitivity in vivo. To this end, two cohorts of nondiabetic subjects of European ancestry were studied. In sample 1 (n = 958) insulin sensitivity was determined by the insulin sensitivity index (ISI), while in sample 2 (n = 527) it was measured with a euglycemic-hyperinsulinemic clamp. In sample 1, carriers of the GG genotype had lower ISI than carriers of the C allele (67633 vs.79644; P = 0.003 after adjusting for age, gender, and BMI). ADMA levels were higher in subjects carrying the GG genotype than in carriers of the C allele (0.6860.14 vs. 0.5760.14 mmol/l; P = 0.04). In sample 2, glucose disposal was lower in GG carriers as compared with C carriers (9.364.1 vs. 11.064.2 mg6Kg 21 free fat mass6min 21; P = 0.009)
Expression of hereditary hemochromatosis C282Y HFE protein in HEK293 cells activates specific endoplasmic reticulum stress responses
<p>Abstract</p> <p>Background</p> <p>Hereditary Hemochromatosis (HH) is a genetic disease associated with iron overload, in which individuals homozygous for the mutant C282Y <it>HFE </it>associated allele are at risk for the development of a range of disorders particularly liver disease. Conformational diseases are a class of disorders associated with the expression of misfolded protein. HFE C282Y is a mutant protein that does not fold correctly and consequently is retained in the Endoplasmic Reticulum (ER). In this context, we sought to identify ER stress signals associated with mutant C282Y HFE protein expression, which may have a role in the molecular pathogenesis of HH.</p> <p>Results</p> <p>Vector constructs of Wild type HFE and Mutant C282Y HFE were made and transfected into HEK293 cell lines. We have shown that expression of C282Y HFE protein triggers both an unfolded protein response (UPR), as revealed by the increased GRP78, ATF6 and CHOP expression, and an ER overload response (EOR), as indicated by NF-κB activation. Furthermore, C282Y HFE protein induced apoptotic responses associated with activation of ER stress. Inhibition studies demonstrated that tauroursodeoxycholic acid, an endogenous bile acid, downregulates these events. Finally, we found that the co-existence of both C282Y HFE and Z alpha 1-antitrypsin protein (the protein associated with the liver disease of Z alpha 1-antitrypsin deficiency) expression on ER stress responses acted as potential disease modifiers with respect to each other.</p> <p>Conclusion</p> <p>Our novel observations suggest that both the ER overload response (EOR) and the unfolded protein response (UPR) are activated by mutant C282Y HFE protein.</p
A comprehensive overview of radioguided surgery using gamma detection probe technology
The concept of radioguided surgery, which was first developed some 60 years ago, involves the use of a radiation detection probe system for the intraoperative detection of radionuclides. The use of gamma detection probe technology in radioguided surgery has tremendously expanded and has evolved into what is now considered an established discipline within the practice of surgery, revolutionizing the surgical management of many malignancies, including breast cancer, melanoma, and colorectal cancer, as well as the surgical management of parathyroid disease. The impact of radioguided surgery on the surgical management of cancer patients includes providing vital and real-time information to the surgeon regarding the location and extent of disease, as well as regarding the assessment of surgical resection margins. Additionally, it has allowed the surgeon to minimize the surgical invasiveness of many diagnostic and therapeutic procedures, while still maintaining maximum benefit to the cancer patient. In the current review, we have attempted to comprehensively evaluate the history, technical aspects, and clinical applications of radioguided surgery using gamma detection probe technology