13 research outputs found

    Rotavirus Rearranged Genomic RNA Segments Are Preferentially Packaged into Viruses Despite Not Conferring Selective Growth Advantage to Viruses

    Get PDF
    The rotavirus (RV) genome consists of 11 double-stranded RNA segments. Sometimes, partial sequence duplication of an RNA segment leads to a rearranged RNA segment. To specify the impact of rearrangement, the replication efficiencies of human RV with rearranged segments 7, 11 or both were compared to these of the homologous human wild-type RV (wt-RV) and of the bovine wt-RV strain RF. As judged by viral growth curves, rotaviruses with a rearranged genome (r-RV) had no selective growth advantage over the homologous wt-RV. In contrast, r-RV were selected over wt-RV during competitive experiments (i.e mixed infections between r-RV and wt-RV followed by serial passages in cell culture). Moreover, when competitive experiments were performed between a human r-RV and the bovine wt-RV strain RF, which had a clear growth advantage, rearranged segments 7, 11 or both always segregated in viral progenies even when performing mixed infections at an MOI ratio of 1 r-RV to 100 wt-RV. Lastly, bovine reassortant viruses that had inherited a rearranged segment 7 from human r-RV were generated. Although substitution of wt by rearranged segment 7 did not result in any growth advantage, the rearranged segment was selected in the viral progenies resulting from mixed infections by bovine reassortant r-RV and wt-RV, even for an MOI ratio of 1 r-RV to 107 wt-RV. Lack of selective growth advantage of r-RV over wt-RV in cell culture suggests a mechanism of preferential packaging of the rearranged segments over their standard counterparts in the viral progeny

    Malaria eradication: the economic, financial and institutional challenge

    Get PDF
    Malaria eradication raises many economic, financial and institutional challenges. This paper reviews these challenges, drawing on evidence from previous efforts to eradicate malaria, with a special focus on resource-poor settings; summarizes more recent evidence on the challenges, drawing on the literature on the difficulties of scaling-up malaria control and strengthening health systems more broadly; and explores the implications of these bodies of evidence for the current call for elimination and intensified control

    Biodiversity, Disparity and Evolvability

    Get PDF
    A key problem in conservation biology is how to measure biological diversity. Taxic diversity (the number of species in a community or in a local biota) is not necessarily the most important aspect, if what most matters is to evaluate how the loss of the different species may impact on the future of the surviving species and communities. Alternative approaches focus on functional diversity (a measure of the distribution of the species among the different 'jobs' in the ecosystem), others on morphological disparity, still others on phylogenetic diversity. There are three major reasons to prioritize the survival of species which provide the largest contributions to the overall phylogenetic diversity. First, evolutionarily isolated lineages are frequently characterized by unique traits. Second, conserving phylogenetically diverse sets of taxa is valuable because it conserves some sort of trait diversity, itself important in so far as it helps maintain ecosystem functioning, although a strict relationships between phylogenetic diversity and functional diversity cannot be taken for granted. Third, in this way we maximize the "evolutionary potential" depending on the evolvability of the survivors. This suggests an approach to conservation problems focussed on evolvability, robustness and phenotypic plasticity of developmental systems in the face of natural selection: in other terms, an approach based on evolutionary developmental biology

    Choice and the evolution of habitat specialization: the case of life on shells

    No full text
    corecore