63 research outputs found

    Exploring types of focused factories in hospital care: a multiple case study

    Get PDF
    Background: Focusing on specific treatments or diseases is proposed as a way to increase the efficiency of hospital care. The definition of "focus" or "focused factory", however, lacks clarity. Examples in health care literature relate to very different organizations.\ud Our aim was to explore the application of the focused factory concept in hospital care, including an indication of its performance, resulting in a conceptual framework that can be helpful in further identifying different types of focused factories. Thus contributing to the understanding of the diversity of examples found in the literature. - \ud \ud Methods: We conducted a cross-case comparison of four multiple-case studies into hospital care. To cover a broad array of focus, different specialty fields were selected. Each study investigated the organizational context, the degree of focus, and the operational performance. Focus was measured using an instrument translated from industry. Data were collected using both qualitative and quantitative methods and included site visits. A descriptive analysis was performed at the case study and cross-case studies level. - \ud \ud Results: The operational performance per specialty field varied considerably, even when cases showed comparable degrees of focus. Cross-case comparison showed three focus domains. The product domain considered specialty based focused factories that treated patients for a single-specialty, but did not pursue a specific strategy nor adapted work-designs or layouts. The process domain considered delivery based focused factories that treated multiple groups of patients and often pursued strategies to improve efficiency and timeliness and adapted work-designs and physical layouts to minimize delays. The product-process domain considered procedure based focused factories that treated a single well-defined group of patients offering one type of treatment. The strategic focusing decisions and the design of the care delivery system appeared especially important for delivery and procedure based focused factories. - \ud \ud Conclusions: Focus in hospital care relates to limitations on the patient group treated and the range of services offered. Based on these two dimensions, we identified three types of focused factories: specialty based, delivery based, and procedure based. Focus could lead to better operational performance, but only when clear strategic focusing decisions are made

    A RAC/CDC-42–Independent GIT/PIX/PAK Signaling Pathway Mediates Cell Migration in C. elegans

    Get PDF
    P21 activated kinase (PAK), PAK interacting exchange factor (PIX), and G protein coupled receptor kinase interactor (GIT) compose a highly conserved signaling module controlling cell migrations, immune system signaling, and the formation of the mammalian nervous system. Traditionally, this signaling module is thought to facilitate the function of RAC and CDC-42 GTPases by allowing for the recruitment of a GTPase effector (PAK), a GTPase activator (PIX), and a scaffolding protein (GIT) as a regulated signaling unit to specific subcellular locations. Instead, we report here that this signaling module functions independently of RAC/CDC-42 GTPases in vivo to control the cell shape and migration of the distal tip cells (DTCs) during morphogenesis of the Caenorhabditis elegans gonad. In addition, this RAC/CDC-42–independent PAK pathway functions in parallel to a classical GTPase/PAK pathway to control the guidance aspect of DTC migration. Among the C. elegans PAKs, only PAK-1 functions in the GIT/PIX/PAK pathway independently of RAC/CDC42 GTPases, while both PAK-1 and MAX-2 are redundantly utilized in the GTPase/PAK pathway. Both RAC/CDC42–dependent and –independent PAK pathways function with the integrin receptors, suggesting that signaling through integrins can control the morphology, movement, and guidance of DTC through discrete pathways. Collectively, our results define a new signaling capacity for the GIT/PIX/PAK module that is likely to be conserved in vertebrates and demonstrate that PAK family members, which are redundantly utilized as GTPase effectors, can act non-redundantly in pathways independent of these GTPases

    Interest groups in multiple streams:specifying their involvement in the framework

    Get PDF
    Although interests inhabit a central place in the multiple streams framework (MSF), interest groups have played only a minor role in theoretical and empirical studies until now. In Kingdon’s original conception, organized interests are a key variable in the politics stream. Revisiting Kingdon’s concept with a particular focus on interest groups and their activities—in different streams and at various levels—in the policy process, we take this argument further. In particular, we argue that specifying groups’ roles in other streams adds value to the explanatory power of the framework. To do this, we look at how interest groups affect problems, policies, and politics. The influence of interest groups within the streams is explained by linking the MSF with literature on interest intermediation. We show that depending on the number of conditions and their activity level, interest groups can be involved in all three streams. We illustrate this in case studies reviewing labor market policies in Germany and chemicals regulation at the European level

    Identification of Upper Respiratory Tract Pathogens Using Electrochemical Detection on an Oligonucleotide Microarray

    Get PDF
    Bacterial and viral upper respiratory infections (URI) produce highly variable clinical symptoms that cannot be used to identify the etiologic agent. Proper treatment, however, depends on correct identification of the pathogen involved as antibiotics provide little or no benefit with viral infections. Here we describe a rapid and sensitive genotyping assay and microarray for URI identification using standard amplification and hybridization techniques, with electrochemical detection (ECD) on a semiconductor-based oligonucleotide microarray. The assay was developed to detect four bacterial pathogens (Bordetella pertussis, Streptococcus pyogenes, Chlamydia pneumoniae and Mycoplasma pneumoniae) and 9 viral pathogens (adenovirus 4, coronavirus OC43, 229E and HK, influenza A and B, parainfluinza types 1, 2, and 3 and respiratory syncytial virus. This new platform forms the basis for a fully automated diagnostics system that is very flexible and can be customized to suit different or additional pathogens. Multiple probes on a flexible platform allow one to test probes empirically and then select highly reactive probes for further iterative evaluation. Because ECD uses an enzymatic reaction to create electrical signals that can be read directly from the array, there is no need for image analysis or for expensive and delicate optical scanning equipment. We show assay sensitivity and specificity that are excellent for a multiplexed format

    Institutional shared resources and translational cancer research

    Get PDF
    The development and maintenance of adequate shared infrastructures is considered a major goal for academic centers promoting translational research programs. Among infrastructures favoring translational research, centralized facilities characterized by shared, multidisciplinary use of expensive laboratory instrumentation, or by complex computer hardware and software and/or by high professional skills are necessary to maintain or improve institutional scientific competitiveness. The success or failure of a shared resource program also depends on the choice of appropriate institutional policies and requires an effective institutional governance regarding decisions on staffing, existence and composition of advisory committees, policies and of defined mechanisms of reporting, budgeting and financial support of each resource. Shared Resources represent a widely diffused model to sustain cancer research; in fact, web sites from an impressive number of research Institutes and Universities in the U.S. contain pages dedicated to the SR that have been established in each Center, making a complete view of the situation impossible. However, a nation-wide overview of how Cancer Centers develop SR programs is available on the web site for NCI-designated Cancer Centers in the U.S., while in Europe, information is available for individual Cancer centers. This article will briefly summarize the institutional policies, the organizational needs, the characteristics, scientific aims, and future developments of SRs necessary to develop effective translational research programs in oncology
    • …
    corecore