339 research outputs found
Sensitization of spinal cord nociceptive neurons with a conjugate of substance P and cholera toxin
<p>Abstract</p> <p>Background</p> <p>Several investigators have coupled toxins to neuropeptides for the purpose of lesioning specific neurons in the central nervous system. By producing deficits in function these toxin conjugates have yielded valuable information about the role of these cells. In an effort to specifically stimulate cells rather than kill them we have conjugated the neuropeptide substance P to the catalytic subunit of cholera toxin (SP-CTA). This conjugate should be taken up selectively by neurokinin receptor expressing neurons resulting in enhanced adenylate cyclase activity and neuronal firing.</p> <p>Results</p> <p>The conjugate SP-CTA stimulates adenylate cyclase in cultured cells that are transfected with either the NK1 or NK2 receptor, but not the NK3 receptor. We further demonstrate that intrathecal injection of SP-CTA in rats induces the phosphorylation of the transcription factor cyclic AMP response element binding protein (CREB) and also enhances the expression of the immediate early gene c-Fos. Behaviorally, low doses of SP-CTA (1 ΞΌg) injected intrathecally produce thermal hyperalgesia. At higher doses (10 ΞΌg) peripheral sensitivity is suppressed suggesting that descending inhibitory pathways may be activated by the SP-CTA induced sensitization of spinal cord neurons.</p> <p>Conclusion</p> <p>The finding that stimulation of adenylate cyclase in neurokinin receptor expressing neurons in the spinal cord produces thermal hyperalgesia is consistent with the known actions of these neurons. These data demonstrate that cholera toxin can be targeted to specific cell types by coupling the catalytic subunit to a peptide agonist for a g-protein coupled receptor. Furthermore, these results demonstrate that SP-CTA can be used as a tool to study sensitization of central neurons in vivo in the absence of an injury.</p
Biomechanical spinal growth modulation and progressive adolescent scoliosis β a test of the 'vicious cycle' pathogenetic hypothesis: Summary of an electronic focus group debate of the IBSE
There is no generally accepted scientific theory for the causes of adolescent idiopathic scoliosis (AIS). As part of its mission to widen understanding of scoliosis etiology, the International Federated Body on Scoliosis Etiology (IBSE) introduced the electronic focus group (EFG) as a means of increasing debate on knowledge of important topics. This has been designated as an on-line Delphi discussion. The text for this debate was written by Dr Ian A Stokes. It evaluates the hypothesis that in progressive scoliosis vertebral body wedging during adolescent growth results from asymmetric muscular loading in a "vicious cycle" (vicious cycle hypothesis of pathogenesis) by affecting vertebral body growth plates (endplate physes). A frontal plane mathematical simulation tested whether the calculated loading asymmetry created by muscles in a scoliotic spine could explain the observed rate of scoliosis increase by measuring the vertebral growth modulation by altered compression. The model deals only with vertebral (not disc) wedging. It assumes that a pre-existing scoliosis curve initiates the mechanically-modulated alteration of vertebral body growth that in turn causes worsening of the scoliosis, while everything else is anatomically and physiologically 'normal' The results provide quantitative data consistent with the vicious cycle hypothesis. Dr Stokes' biomechanical research engenders controversy. A new speculative concept is proposed of vertebral symphyseal dysplasia with implications for Dr Stokes' research and the etiology of AIS. What is not controversial is the need to test this hypothesis using additional factors in his current model and in three-dimensional quantitative models that incorporate intervertebral discs and simulate thoracic as well as lumbar scoliosis. The growth modulation process in the vertebral body can be viewed as one type of the biologic phenomenon of mechanotransduction. In certain connective tissues this involves the effects of mechanical strain on chondrocytic metabolism a possible target for novel therapeutic intervention
Targeted Destruction of Photosensitive Retinal Ganglion Cells with a Saporin Conjugate Alters the Effects of Light on Mouse Circadian Rhythms
Non-image related responses to light, such as the synchronization of circadian rhythms to the day/night cycle, are mediated by classical rod/cone photoreceptors and by a small subset of retinal ganglion cells that are intrinsically photosensitive, expressing the photopigment, melanopsin. This raises the possibility that the melanopsin cells may be serving as a conduit for photic information detected by the rods and/or cones. To test this idea, we developed a specific immunotoxin consisting of an anti-melanopsin antibody conjugated to the ribosome-inactivating protein, saporin. Intravitreal injection of this immunotoxin results in targeted destruction of melanopsin cells. We find that the specific loss of these cells in the adult mouse retina alters the effects of light on circadian rhythms. In particular, the photosensitivity of the circadian system is significantly attenuated. A subset of animals becomes non-responsive to the light/dark cycle, a characteristic previously observed in mice lacking rods, cones, and functional melanopsin cells. Mice lacking melanopsin cells are also unable to show light induced negative masking, a phenomenon known to be mediated by such cells, but both visual cliff and light/dark preference responses are normal. These data suggest that cells containing melanopsin do indeed function as a conduit for rod and/or cone information for certain non-image forming visual responses. Furthermore, we have developed a technique to specifically ablate melanopsin cells in the fully developed adult retina. This approach can be applied to any species subject to the existence of appropriate anti-melanopsin antibodies
Generation, Characterization and Epitope Mapping of Two Neutralizing and Protective Human Recombinant Antibodies against Influenza A H5N1 Viruses
The development of new therapeutic targets and strategies to control highly pathogenic avian influenza (HPAI) H5N1 virus infection in humans is urgently needed. Broadly cross-neutralizing recombinant human antibodies obtained from the survivors of H5N1 avian influenza provide an important role in immunotherapy for human H5N1 virus infection and definition of the critical epitopes for vaccine development.We have characterized two recombinant baculovirus-expressed human antibodies (rhAbs), AVFluIgG01 and AVFluIgG03, generated by screening a Fab antibody phage library derived from a patient recovered from infection with a highly pathogenic avian influenza A H5N1 clade 2.3 virus. AVFluIgG01 cross-neutralized the most of clade 0, clade 1, and clade 2 viruses tested, in contrast, AVFluIgG03 only neutralized clade 2 viruses. Passive immunization of mice with either AVFluIgG01 or AVFluIgG03 antibody resulted in protection from a lethal H5N1 clade 2.3 virus infection. Furthermore, through epitope mapping, we identify two distinct epitopes on H5 HA molecule recognized by these rhAbs and demonstrate their potential to protect against a lethal H5N1 virus infection in a mouse model.Importantly, localization of the epitopes recognized by these two neutralizing and protective antibodies has provided, for the first time, insight into the human antibody responses to H5N1 viruses which contribute to the H5 immunity in the recovered patient. These results highlight the potential of a rhAbs treatment strategy for human H5N1 virus infection and provide new insight for the development of effective H5N1 pandemic vaccines
Large-Scale Sequence Analysis of Hemagglutinin of Influenza A Virus Identifies Conserved Regions Suitable for Targeting an Anti-Viral Response
BACKGROUND: Influenza A viral surface protein, hemagglutinin, is the major target of neutralizing antibody response and hence a main constituent of all vaccine formulations. But due to its marked evolutionary variability, vaccines have to be reformulated so as to include the hemagglutinin protein from the emerging new viral strain. With the constant fear of a pandemic, there is critical need for the development of anti-viral strategies that can provide wider protection against any Influenza A pathogen. An anti-viral approach that is directed against the conserved regions of the hemaggutinin protein has a potential to protect against any current and new Influenza A virus and provide a solution to this ever-present threat to public health. METHODOLOGY/PRINCIPAL FINDINGS: Influenza A human hemagglutinin protein sequences available in the NCBI database, corresponding to H1, H2, H3 and H5 subtypes, were used to identify highly invariable regions of the protein. Nine such regions were identified and analyzed for structural properties like surface exposure, hydrophilicity and residue type to evaluate their suitability for targeting an anti-peptide antibody/anti-viral response. CONCLUSION/SIGNIFICANCE: This study has identified nine conserved regions in the hemagglutinin protein, five of which have the structural characteristics suitable for an anti-viral/anti-peptide response. This is a critical step in the design of efficient anti-peptide antibodies as novel anti-viral agents against any Influenza A pathogen. In addition, these anti-peptide antibodies will provide broadly cross-reactive immunological reagents and aid the rapid development of vaccines against new and emerging Influenza A strains
Molecular and Antigenic Characterization of Reassortant H3N2 Viruses from Turkeys with a Unique Constellation of Pandemic H1N1 Internal Genes
Triple reassortant (TR) H3N2 influenza viruses cause varying degrees of loss in egg production in breeder turkeys. In this study we characterized TR H3N2 viruses isolated from three breeder turkey farms diagnosed with a drop in egg production. The eight gene segments of the virus isolated from the first case submission (FAV-003) were all of TR H3N2 lineage. However, viruses from the two subsequent case submissions (FAV-009 and FAV-010) were unique reassortants with PB2, PA, nucleoprotein (NP) and matrix (M) gene segments from 2009 pandemic H1N1 and the remaining gene segments from TR H3N2. Phylogenetic analysis of the HA and NA genes placed the 3 virus isolates in 2 separate clades within cluster IV of TR H3N2 viruses. Birds from the latter two affected farms had been vaccinated with a H3N4 oil emulsion vaccine prior to the outbreak. The HAl subunit of the H3N4 vaccine strain had only a predicted amino acid identity of 79% with the isolate from FAV-003 and 80% for the isolates from FAV-009 and FAV-0010. By comparison, the predicted amino acid sequence identity between a prototype TR H3N2 cluster IV virus A/Sw/ON/33853/2005 and the three turkey isolates from this study was 95% while the identity between FAV-003 and FAV-009/10 isolates was 91%. When the previously identified antigenic sites A, B, C, D and E of HA1 were examined, isolates from FAV-003 and FAV-009/10 had a total of 19 and 16 amino acid substitutions respectively when compared with the H3N4 vaccine strain. These changes corresponded with the failure of the sera collected from turkeys that received this vaccine to neutralize any of the above three isolates in vitro
Probenecid Blocks Human P2X7 Receptor-Induced Dye Uptake via a Pannexin-1 Independent Mechanism
P2X7 is a ligand-gated ion channel which is activated by ATP and displays secondary permeability characteristics. The mechanism of development of the secondary permeability pathway is currently unclear, although a role for the hemichannel protein pannexin-1 has been suggested. In this study we investigated the role of pannexin-1 in P2X7-induced dye uptake and ATP-induced IL-1Ξ² secretion from human monocytes. We found no pharmacological evidence for involvement of pannexin-1 in P2X7-mediated dye uptake in transfected HEK-293 cells with no inhibition seen for carbenoxolone and the pannexin-1 mimetic inhibitory peptide, 10Panx1. However, we found that probenecid inhibited P2X7-induced cationic and anionic dye uptake in stably transfected human P2X7 HEK-293 cells. An IC50 value of 203 ΞΌM was calculated for blockade of ATP-induced responses at human P2X7. Probenecid also reduced dye uptake and IL-1Ξ² secretion from human CD14+ monocytes whereas carbenoxolone and 10Panx1 showed no inhibitory effect. Patch clamp and calcium indicator experiments revealed that probenecid directly blocks the human P2X7 receptor
Ethnic differences in DNA methyltransferases expression in patients with systemic lupus erythematosus
Systemic lupus erythematous (SLE) is a systemic autoimmune inflammatory disease with both genetic and epigenetic etiologies. Evidence suggests that deregulation of specific genes through epigenetic mechanisms may be a contributing factor to SLE pathology. There is increasing evidence that DNA methyltransferase activity may be involved. This study demonstrated modulation in expression of DNA methyltransferases (DNMTs) according to ethnicity in patients diagnosed with SLE. Furthermore, differential expression in one of the DNMTs was found in a subset of lupus patients on dehydroepiandrosterone (DHEA) therapy. Real-time PCR analyses of DNMT1, DNMT3A and DNMT3B in peripheral blood mononuclear cells from a cohort of African American and European American lupus and non-lupus women were conducted. Also, global DNA methylation was assessed using the MethylFlash.sup.TM methylated quantification colorimetric assay. These findings suggest that epigenetic changes may play a critical role in the manifestations of the disease observed among ethnic groups, particularly African American women who often have a higher incidence of lupus. DHEA therapy effects on DNMT3A expression in AA women warrant further investigation in a larger population
- β¦