52 research outputs found

    Heavy Meson Production in Proton-Nucleus Reactions with Empirical Spectral Functions

    Get PDF
    We study the production of K+,ρ,ωK^+, \rho, \omega and ϕ\phi mesons in p+12Cp + ^{12}C reactions on the basis of empirical spectral functions. The high momentum, high removal energy part of the spectral function is found to be negligible in all cases close to the absolute threshold. Furthermore, the two-step process (pNπNN;πNN+K+,ρ,ω,ϕpN \rightarrow \pi N N; \pi N \rightarrow N + K^+, \rho, \omega, \phi) dominates the cross section at threshold energies in line with earlier calculations based on the folding model.Comment: 18 pages, LaTeX, plus 14 postscript figures, submitted to Z. Phys.

    State-Dependent Accessibility of the P-S6 Linker of Pacemaker (HCN) Channels Supports a Dynamic Pore-to-Gate Coupling Model

    Get PDF
    The hyperpolarization-activated cyclic nucleotide-modulated channel gene family (HCN1-4) encodes the membrane depolarizing current that underlies pacemaking. Although the topology of HCN resembles Kv channels, much less is known about their structure-function correlation. Previously, we identified several pore residues in the S5-P linker and P-loop that are externally accessible and/or influence HCN gating, and proposed an evolutionarily conserved pore-to-gate mechanism. Here we sought dynamic evidence by assessing the functional consequences of Cys-scanning substitutions in the unexplored P-S6 linker (residues 352–359), the HCN1-R background (that is, resistant to sulfhydryl-reactive agents). None of A352C, Q353C, A354C, P355C, V356C, S357C, M358C, or S359C produced functional currents; the loss-of-function of Q353C, A354C, S357C, and M358C could be rescued by the reducing agent dithiothreitol. Q353C, A354C, and S357C, but not M358C and HCN1-R, were sensitive to Cd2+ blockade (IC50 = 3–12 μM vs. >1 mM). External application of the positively charged covalent sulfhydryl modifier MTSET irreversibly reduced I−140mV of Q353C and A354C to 27.9 ± 3.4% and 58.2 ± 13.1% of the control, respectively, and caused significant steady-state activation shifts (∆V1/2 = –21.1 ± 1.6 for Q353C and −10.0 ± 2.9 mV for A354C). Interestingly, MTSET reactivity was also state dependent. MTSET, however, affected neither S357C nor M358C, indicating site specificity. Collectively, we have identified novel P-S6 residues whose extracellular accessibility was sterically and state dependent and have provided the first functional evidence consistent with a dynamic HCN pore-to-gate model

    Value of MRI and diffusion-weighted MRI for the diagnosis of locally recurrent rectal cancer

    Get PDF
    OBJECTIVES: To evaluate the accuracy of standard MRI, diffusion-weighted MRI (DWI) and fusion images for the diagnosis of locally recurrent rectal cancer in patients with a clinical suspicion of recurrence. METHODS: Forty-two patients with a clinical suspicion of recurrence underwent 1.5-T MRI consisting of standard T2-weighted FSE (3 planes) and an axial DWI (b0,500,1000). Two readers (R1,R2) independently scored the likelihood of recurrence; [1] on standard MRI, [2] on standard MRI+DWI, and [3] on T2-weighted+DWI fusion images. RESULTS: 19/42 patients had a local recurrence. R1 achieved an area under the ROC-curve (AUC) of 0.99, sensitivity 100% and specificity 83% on standard MRI versus 0.98, 100% and 91% after addition of DWI (p = 0.78). For R2 these figures were 0.87, 84% and 74% on standard MRI and 0.91, 89% and 83% with DWI (p = 0.09). Fusion images did not significantly improve the performance. Interobserver agreement was kappa0.69 for standard MRI, kappa0.82 for standard MRI+DWI and kappa0.84 for the fusion images. CONCLUSIONS: MRI is accurate for the diagnosis of locally recurrent rectal cancer in patients with a clinical suspicion of recurrence. Addition of DWI does not significantly improve its performance. However, with DWI specificity and interobserver agreement increase. Fusion images do not improve accuracy

    Systematic review with meta-analysis of the epidemiological evidence relating smoking to COPD, chronic bronchitis and emphysema

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Smoking is a known cause of the outcomes COPD, chronic bronchitis (CB) and emphysema, but no previous systematic review exists. We summarize evidence for various smoking indices.</p> <p>Methods</p> <p>Based on MEDLINE searches and other sources we obtained papers published to 2006 describing epidemiological studies relating incidence or prevalence of these outcomes to smoking. Studies in children or adolescents, or in populations at high respiratory disease risk or with co-existing diseases were excluded. Study-specific data were extracted on design, exposures and outcomes considered, and confounder adjustment. For each outcome RRs/ORs and 95% CIs were extracted for ever, current and ex smoking and various dose response indices, and meta-analyses and meta-regressions conducted to determine how relationships were modified by various study and RR characteristics.</p> <p>Results</p> <p>Of 218 studies identified, 133 provide data for COPD, 101 for CB and 28 for emphysema. RR estimates are markedly heterogeneous. Based on random-effects meta-analyses of most-adjusted RR/ORs, estimates are elevated for ever smoking (COPD 2.89, CI 2.63-3.17, n = 129 RRs; CB 2.69, 2.50-2.90, n = 114; emphysema 4.51, 3.38-6.02, n = 28), current smoking (COPD 3.51, 3.08-3.99; CB 3.41, 3.13-3.72; emphysema 4.87, 2.83-8.41) and ex smoking (COPD 2.35, 2.11-2.63; CB 1.63, 1.50-1.78; emphysema 3.52, 2.51-4.94). For COPD, RRs are higher for males, for studies conducted in North America, for cigarette smoking rather than any product smoking, and where the unexposed base is never smoking any product, and are markedly lower when asthma is included in the COPD definition. Variations by sex, continent, smoking product and unexposed group are in the same direction for CB, but less clearly demonstrated. For all outcomes RRs are higher when based on mortality, and for COPD are markedly lower when based on lung function. For all outcomes, risk increases with amount smoked and pack-years. Limited data show risk decreases with increasing starting age for COPD and CB and with increasing quitting duration for COPD. No clear relationship is seen with duration of smoking.</p> <p>Conclusions</p> <p>The results confirm and quantify the causal relationships with smoking.</p

    Strongly coupled binuclear uranium-oxo complexes from uranyl oxo rearrangement and reductive silylation

    Get PDF
    The most common motif in uranium chemistry is the d0f0 uranyl ion [UO2]21 in which the oxo groups are rigorously linear and inert. Alternative geometries, such as the cis-uranyl, have been identified theoretically and implicated in oxo-atom transfer reactions that are relevant to environmental speciation and nuclear waste remediation. Single electron reduction is now known to impart greater oxo-group reactivity, but with retention of the linear OUO motif, and reactions of the oxo groups to form new covalent bonds remain rare. Here, we describe the synthesis, structure, reactivity and magnetic properties of a binuclear uranium–oxo complex. Formed through a combination of reduction and oxo-silylation and migration from a trans to a cis position, the new butterfly-shaped Si–OUO2UO–Si molecule shows remarkably strong UV–UV coupling and chemical inertness, suggesting that this rearranged uranium oxo motif might exist for other actinide species in the environment, and have relevance to the aggregation of actinide oxide clusters.JRC.E.6-Actinides researc

    Beyond equilibrium climate sensitivity

    Get PDF
    ISSN:1752-0908ISSN:1752-089

    Pore residues critical for μ-CTX binding to rat skeletal muscle Na+ channels revealed by cysteine mutagenesis

    No full text
    We have studied μ-conotoxin (μ-CTX) block of rat skeletal muscle sodium channel (rSkM1) currents in which single amine acids within the pore (P-loop) were substituted with cysteine. Among 17 cysteine mutants expressed in Xenopus oocytes, 7 showed significant alterations in sensitivity to μ- CTX compared to wild-type rSkM 1 channel (IC50- = 17.5 ± 2.8 nM). E758C and D1241C were less sensitive to μ-CTX block (IC50 = 220 ± 39 nM and 112 ± 24 nM, respectively), whereas the tryptophan mutants W402C, W1239C, and W1531C showed enhanced μ-CTX sensitivity (IC50 = 1.9 ± 0.1, 4.9 ± 0.9, and 5.5 ± 0.4 nM, respectively). D400C and Y401C also showed statistically significant yet modest (approximately twofold) changes in sensitivity to μ- CTX block compared to WT (p 1 μM) and increased the IC50 of D1241C by about threefold. Applications of MTSEA, MTSES, and the neutral MTSBN (benzyl methanethiosulfonate) to the tryptophan- to-cysteine mutants partially or fully restored the wild-type μ-CTX sensitivity, suggesting that the bulkiness of the tryptophan's indole group is a determinant of toxin binding. In support of this suggestion, the blocking IC50 of W1531A (7.5 ± 1.3 nM) was similar to W1531C, whereas W1531Y showed reduced toxin sensitivity (14.6 ± 3.5 nM) similar to that of the wild-type channel. Our results demonstrate that charge at positions 758 and 1241 are important for μ-CTX toxin binding and further suggest that the tryptophan residues within the pore in domains I, III, and IV negatively influence toxin-channel interaction.link_to_subscribed_fulltex

    P-loop flexibility in Na+ channel pores revealed by single- and double- cysteine replacements

    No full text
    Replacement of individual P-loop residues with cysteines in rat skeletal muscle Na+ channels (SkMI) caused an increased sensitivity to current blockade by Cd2+ thus allowing detection of residues lining the pore. Simultaneous replacement of two residues in distinct P-loops created channels with enhanced and reduced sensitivity to Cd2+ block relative to the individual single mutants, suggesting coordinated Cd2+ binding and cross- linking by the inserted sulfhydryl pairs. Double-mutant channels with reduced sensitivity to Cd2+ block showed enhanced sensitivity after the application of sulfhydryl reducing agents. These results allow identification of residue pairs capable of approaching one another to within less than 3.5 Å. We often observed that multiple consecutive adjacent residues in one P-loop could coordinately bind Cd2+ with a single residue in another P-loop. These results suggest that, on the time-scale of Cd2+ binding to mutant Na+ channels, P-loops show a high degree of flexibility.link_to_subscribed_fulltex

    Altered ionic selectivity of the sodium channel revealed by cysteine mutations within the pore

    No full text
    To explore the role of pore-lining amino acids in Na+ channel ion- selectivity, pore residues were replaced serially with cysteine in cloned rat skeletal muscle Na+ channels. Ionic selectivity was determined by measuring permeability and ionic current ratios of whole-cell currents in Xenopus oocytes. The rSkM1 channels displayed an ionic selectivity sequence Na+>Li+>NH4 +>>K+>>Cs+ and were impermeable to divalent cations. Replacement of residues in domain IV showed significantly enhanced current and permeability ratios of NH4 + and K+, and negative shifts in the reversal potentials recorded in the presence of external Na+ solutions when compared to cysteine mutants in domains I, II, and III (except K1237C). Mutants in domain IV showed altered selectivity sequences: W1531C (NH4 +>K+>Na+≤Li+≃Cs+), D1532C, and G1533C (Na+>Li+≤NH4 +>K+>Cs+). Conservative replacement of the aromatic residue in domain IV (W1531) with phenylalanine or tyrosine retained Na+ selectivity of the channel while the alanine mutant (W1531A) reduced ion selectivity. A single mutation within the third pore forming region (K1237C) dramatically altered the selectivity sequence of the rSkM1 channel (NH4 +>+K+>Na+≤Li+≃Cs+) and was permeable to divalent cations having the selectivity sequence Ca2+≤Sr2+>Mg2+>Ba2+. Sulfhydryl modification of K1237C, W1531C or D1532C with methanethiosulfonate derivatives that introduce a positively charged ammonium group, large trimethylammonium moiety, or a negatively charged sulfonate group within the pore was ineffective in restoring Na+ selectivity to these channels. Selectivity of D1532C mutants could be largely restored by increasing extracellular pH suggesting altering the ionized state at this position influences selectivity. These data suggest that K1237 in domain III and W1531, D1532, and G1533 in domain IV play a critical role in determining the ionic selectivity of the Na+ channel.link_to_subscribed_fulltex
    corecore