80 research outputs found

    Enhanced tumour antiangiogenic effects when combining gefitinib with the antivascular agent ZD6126

    Get PDF
    Current experimental and clinical knowledge supports the optimisation of endothelial cell targeting using a strategy combining anti-EGFR drugs with antivascular agents. The purpose of the present study was to examine the effects of the association of ZD6126, an antivascular microtubule-destabilising agent, with gefitinib and irradiation on the growth of six head and neck human cancer cell lines xenografted in nude mice and to study predictive and molecular factors responsible for antitumour effects. CAL33- and Hep-2-grafted cell lines were the most sensitive to ZD6126 treatment, with VEGF levels significantly higher (P=0.0336) in these tumour xenografts compared to Detroit 562- and CAL27-grafted cell lines with relatively low VEGF levels that were not sensitive to ZD6126. In contrast, neither IL8 levels nor EGFR expression was linked to the antitumour effects of ZD6126. ZD6126 in combination with gefitinib resulted in a synergistic cytotoxic interaction with greater antitumour effects than gefitinib alone. The synergistic interaction between ZD6126 and gefitinib was corroborated by a significant decrease in CD31 labelling. The present study may serve for future innovative clinical applications, as it suggests that VEGF tumour levels are possible predictors for ZD6126 antitumour efficacy. It also supports the notion of antitumour supra-additivity when combining gefitinib and ZD6126, and identifies neoangiogenesis as the main determinant of this synergistic combination

    Multiple Wnt/ß-Catenin Responsive Enhancers Align with the MYC Promoter through Long-Range Chromatin Loops

    Get PDF
    Inappropriate activation of c-Myc (MYC) gene expression by the Wnt/ß-catenin signaling pathway is required for colorectal carcinogenesis. The elevated MYC levels in colon cancer cells are attributed in part to ß-catenin/TCF4 transcription complexes that are assembled at proximal Wnt/ß-catenin responsive enhancers (WREs). Recent studies suggest that additional WREs that control MYC expression reside far upstream of the MYC transcription start site. Here, I report the characterization of five novel WREs that localize to a region over 400 kb upstream from MYC. These WREs harbor nucleosomes with post-translational histone modifications that demarcate enhancer and gene promoter regions. Using quantitative chromatin conformation capture, I show that the distal WREs are aligned with the MYC promoter through large chromatin loops. The chromatin loops are not restricted to colon cancer cells, but are also found in kidney epithelial and lung fibroblast cell lines that lack de-regulated Wnt signaling and nuclear ß-catenin/TCF4 complexes. While each chromatin loop is detected in quiescent cells, the positioning of three of the five distal enhancers with the MYC promoter is induced by serum mitogens. These findings suggest that the architecture of the MYC promoter is comprised of distal elements that are juxtaposed through large chromatin loops and that ß-catenin/TCF4 complexes utilize this conformation to activate MYC expression in colon cancer cells

    A Computational Profiling of Changes in Gene Expression and Transcription Factors Induced by vFLIP K13 in Primary Effusion Lymphoma

    Get PDF
    Infection with Kaposi's sarcoma associated herpesvirus (KSHV) has been linked to the development of primary effusion lymphoma (PEL), a rare lymphoproliferative disorder that is characterized by loss of expression of most B cell markers and effusions in the body cavities. This unique clinical presentation of PEL has been attributed to their distinctive plasmablastic gene expression profile that shows overexpression of genes involved in inflammation, adhesion and invasion. KSHV-encoded latent protein vFLIP K13 has been previously shown to promote the survival and proliferation of PEL cells. In this study, we employed gene array analysis to characterize the effect of K13 on global gene expression in PEL-derived BCBL1 cells, which express negligible K13 endogenously. We demonstrate that K13 upregulates the expression of a number of NF-κB responsive genes involved in cytokine signaling, cell death, adhesion, inflammation and immune response, including two NF-κB subunits involved in the alternate NF-κB pathway, RELB and NFKB2. In contrast, CD19, a B cell marker, was one of the genes downregulated by K13. A comparison with K13-induced genes in human vascular endothelial cells revealed that although there was a considerable overlap among the genes induced by K13 in the two cell types, chemokines genes were preferentially induced in HUVEC with few exceptions, such as RANTES/CCL5, which was induced in both cell types. Functional studies confirmed that K13 activated the RANTES/CCL5 promoter through the NF-κB pathway. Taken collectively, our results suggest that K13 may contribute to the unique gene expression profile, immunophenotype and clinical presentation that are characteristics of KSHV-associated PEL

    Co-Orientation of Replication and Transcription Preserves Genome Integrity

    Get PDF
    In many bacteria, there is a genome-wide bias towards co-orientation of replication and transcription, with essential and/or highly-expressed genes further enriched co-directionally. We previously found that reversing this bias in the bacterium Bacillus subtilis slows replication elongation, and we proposed that this effect contributes to the evolutionary pressure selecting the transcription-replication co-orientation bias. This selection might have been based purely on selection for speedy replication; alternatively, the slowed replication might actually represent an average of individual replication-disruption events, each of which is counter-selected independently because genome integrity is selected. To differentiate these possibilities and define the precise forces driving this aspect of genome organization, we generated new strains with inversions either over ∼1/4 of the chromosome or at ribosomal RNA (rRNA) operons. Applying mathematical analysis to genomic microarray snapshots, we found that replication rates vary dramatically within the inverted genome. Replication is moderately impeded throughout the inverted region, which results in a small but significant competitive disadvantage in minimal medium. Importantly, replication is strongly obstructed at inverted rRNA loci in rich medium. This obstruction results in disruption of DNA replication, activation of DNA damage responses, loss of genome integrity, and cell death. Our results strongly suggest that preservation of genome integrity drives the evolution of co-orientation of replication and transcription, a conserved feature of genome organization

    PI3Kinase signaling in glioblastoma

    Get PDF
    Glioblastoma (GBM) is the most common primary tumor of the CNS in the adult. It is characterized by exponential growth and diffuse invasiveness. Among many different genetic alterations in GBM, e.g., mutations of PTEN, EGFR, p16/p19 and p53 and their impact on aberrant signaling have been thoroughly characterized. A major barrier to develop a common therapeutic strategy is founded on the fact that each tumor has its individual genetic fingerprint. Nonetheless, the PI3K pathway may represent a common therapeutic target to most GBM due to its central position in the signaling cascade affecting proliferation, apoptosis and migration. The read-out of blocking PI3K alone or in combination with other cancer pathways should mainly focus, besides the cytostatic effect, on cell death induction since sublethal damage may induce selection of more malignant clones. Targeting more than one pathway instead of a single agent approach may be more promising to kill GBM cells
    corecore