78 research outputs found

    Microstructural and Mössbauer properties of low temperature synthesized Ni-Cd-Al ferrite nanoparticles

    Get PDF
    We report the influence of Al3+ doping on the microstructural and Mössbauer properties of ferrite nanoparticles of basic composition Ni0.2Cd0.3Fe2.5 - xAlxO4 (0.0 ≤ x ≤ 0.5) prepared through simple sol-gel method. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray, transmission electron microscopy (TEM), Fourier transformation infrared (FTIR), and Mössbauer spectroscopy techniques were used to investigate the structural, chemical, and Mössbauer properties of the grown nanoparticles. XRD results confirm that all the samples are single-phase cubic spinel in structure excluding the presence of any secondary phase corresponding to any structure. SEM micrographs show the synthesized nanoparticles are agglomerated but spherical in shape. The average crystallite size of the grown nanoparticles was calculated through Scherrer formula and confirmed by TEM and was found between 2 and 8 nm (± 1). FTIR results show the presence of two vibrational bands corresponding to tetrahedral and octahedral sites. Mössbauer spectroscopy shows that all the samples exhibit superparamagnetism, and the quadrupole interaction increases with the substitution of Al3+ ions

    Understanding global sea levels: past, present and future

    Get PDF
    The coastal zone has changed profoundly during the 20th century and, as a result, society is becoming increasingly vulnerable to the impact of sea-level rise and variability. This demands improved understanding to facilitate appropriate planning to minimise potential losses. With this in mind, the World Climate Research Programme organised a workshop (held in June 2006) to document current understanding and to identify research and observations required to reduce current uncertainties associated with sea-level rise and variability. While sea levels have varied by over 120 m during glacial/interglacial cycles, there has been little net rise over the past several millennia until the 19th century and early 20th century, when geological and tide-gauge data indicate an increase in the rate of sea-level rise. Recent satellite-altimeter data and tide-gauge data have indicated that sea levels are now rising at over 3 mm year−1. The major contributions to 20th and 21st century sea-level rise are thought to be a result of ocean thermal expansion and the melting of glaciers and ice caps. Ice sheets are thought to have been a minor contributor to 20th century sea-level rise, but are potentially the largest contributor in the longer term. Sea levels are currently rising at the upper limit of the projections of the Third Assessment Report of the Intergovernmental Panel on Climate Change (TAR IPCC), and there is increasing concern of potentially large ice-sheet contributions during the 21st century and beyond, particularly if greenhouse gas emissions continue unabated. A suite of ongoing satellite and in situ observational activities need to be sustained and new activities supported. To the extent that we are able to sustain these observations, research programmes utilising the resulting data should be able to significantly improve our understanding and narrow projections of future sea-level rise and variabilit

    Earthquake safety in India: achievements, challenges and opportunities

    Get PDF
    The Indian subcontinent has suffered some of the greatest earthquakes in the world. The earthquakes of the late nineteenth and early twentieth centuries triggered a number of early advances in science and engineering related to earthquakes that are discussed here. These include the development of early codes and earthquake-resistant housing after the 1935 Quetta earthquake in Baluchistan, and strengthening techniques implemented after the 1941 Andaman Islands earthquake, discovered by the author in remote islands of India. Activities in the late 1950s to institutionalize earthquake engineering in the country are also discussed. Despite these early developments towards seismic safety, moderate earthquakes in India continue to cause thousands of deaths, indicating the poor seismic resilience of the built environment. The Bhuj earthquake of 2001 highlighted a striking disregard for structural design principles and quality of construction. This earthquake was the first instance of an earthquake causing collapses of modern multi-storey buildings in India, and it triggered unprecedented awareness amongst professionals, academics and the general public. The earthquake led to the further development of the National Information Centre of Earthquake Engineering and the establishment of a comprehensive 4-year National Programme on Earthquake Engineering Education that was carried out by the seven Indian Institutes of Technology and the Indian Institute of Science. Earthquake engineering is a highly context-specific discipline and there are many engineering problems where appropriate solutions need to be found locally. Confined masonry construction is one such building typology that the author has been championing for the subcontinent. Development of the student hostels and staff and faculty housing on the new 400-acre campus of the Indian Institute of Technology Gandhinagar has provided an opportunity to adopt this construction typology on a large scale, and is addressed in the monograph. The vulnerability of the building stock in India is also evident from the occasional news reports of collapses of buildings under construction or during rains (without any earthquake shaking). Given India’s aspirations to be counted as one of the world’s prosperous countries, there is a great urgency to address the safety of our built environment. There is a need: to create a more professional environment for safe construction, including a system for code enforcement and building inspection; for competence-based licensing of civil and structural engineers; for training and education of all stakeholders in the construction chain; to build a research and development culture for seismic safety; to encourage champions of seismic safety; to effectively use windows of opportunity provided by damaging earthquakes; to focus on new construction as opposed to retrofitting existing buildings; and to frame the problem in the broader context of overall building safety rather than the specific context of earthquakes. Sustained long-term efforts are required to address this multi-faceted complex problem of great importance to the future development of India. While the context of this paper is India, many of the observations may be valid and useful for other earthquake-prone countriesby Sudhir K. Jai
    corecore