43 research outputs found
Decreased renal function in overweight and obese prepubertal children
BACKGROUND: Obesity is a potentially modifiable risk factor for the development and progression of kidney disease, both in adults and children. We aim to study the association of obesity and renal function in children, by comparing estimated glomerular filtration rate (eGFR) in nonoverweight and overweight/obese children. Secondarily, we aim to evaluate the accuracy of equations on eGFR estimation when compared to 24-h urinary creatinine clearance (CrCl).
METHODS: Cross-sectional study of 313 children aged 8-9 y, followed in the birth cohort Generation XXI (Portugal). Creatinine and cystatin C, GFR estimated by several formulas and CrCl were compared in 163 nonoverweight and 150 overweight/obese, according to World Health Organization growth reference.
RESULTS: Overweight/obese children had significantly lower eGFR, estimated by all methods, except for CrCl and revised Schwartz formula. Despite all children having renal function in the normal range, eGFR decreased significantly with BMI z-score (differences ranging from -4.3 to -1.1 ml/min/1.73 m(2) per standard deviation of BMI). The Zappitelli combined formula presented the closest performance to CrCl, with higher correlation coefficients and higher accuracy values.
CONCLUSION: Young prepubertal children with overweight/obesity already present significantly lower GFR estimations that likely represent some degree of renal impairment associated with the complex deleterious effects of adiposity
NF-κB activation in inflammatory breast cancer is associated with oestrogen receptor downregulation, secondary to EGFR and/or ErbB2 overexpression and MAPK hyperactivation
Activation of NF-κB in inflammatory breast cancer (IBC) is associated with loss of estrogen receptor (ER) expression, indicating a potential crosstalk between NF-κB and ER. In this study, we examined the activation of NF-κB in IBC and non-IBC with respect to ER and EGFR and/or ErbB2 expression and MAPK hyperactivation. A qRT–PCR based ER signature was evaluated in tumours with and without transcriptionally active NF-κB, as well as correlated with the expression of eight NF-κB target genes. Using a combined ER/NF-κB signature, hierarchical clustering was executed. Hyperactivation of MAPK was investigated using a recently described MAPK signature (Creighton et al, 2006), and was linked to tumour phenotype, ER and EGFR and/or ErbB2 overexpression. The expression of most ER-modulated genes was significantly elevated in breast tumours without transcriptionally active NF-κB. In addition, the expression of most ER-modulated genes was significantly anticorrelated with the expression of most NF-κB target genes, indicating an inverse correlation between ER and NF-κB activation. Clustering using the combined ER and NF-κB signature revealed one cluster mainly characterised by low NF-κB target gene expression and a second one with elevated NF-κB target gene expression. The first cluster was mainly characterised by non-IBC specimens and IHC ER+ breast tumours (13 out of 18 and 15 out of 18 respectively), whereas the second cluster was mainly characterised by IBC specimens and IHC ER− breast tumours (12 out of 19 and 15 out of 19 respectively) (Pearson χ2, P<0.0001 and P<0.0001 respectively). Hyperactivation of MAPK was associated with both ER status and tumour phenotype by unsupervised hierarchical clustering using the MAPK signature and was significantly reflected by overexpression of EGFR and/or ErbB2. NF-κB activation is linked to loss of ER expression and activation in IBC and in breast cancer in general. The inverse correlation between NF-κB activation and ER activation is due to EGFR and/or ErbB2 overexpression, resulting in NF-κB activation and ER downregulation
Improvement in Renal Function and Reduction in Serum Uric Acid with Intensive Statin Therapy in Older Patients: A Post Hoc Analysis of the SAGE Trial
BACKGROUND: Improvement in renal function and decreases in serum uric acid (SUA) have been reported following prolonged high-intensity statin (HMG-CoA reductase inhibitor) therapy. This post hoc analysis of the SAGE trial examined the effect of intensive versus less intensive statin therapy on renal function, safety, and laboratory parameters, including SUA, in elderly coronary artery disease (CAD) patients (65–85 years) with or without chronic kidney disease (CKD). METHODS: Patients were randomized to atorvastatin 80 mg/day or pravastatin 40 mg/day and treated for 12 months. Patients were stratified using Modification of Diet in Renal Disease (MDRD) estimated glomerular filtration rates (eGFRs) in CKD (eGFR <60 mL/min/1.73 m(2)) and non-CKD populations. RESULTS: Of the 893 patients randomized, 858 had complete renal data and 418 of 858 (49 %) had CKD (99 % Stage 3). Over 12 months, eGFR increased with atorvastatin and remained stable with pravastatin (+2.38 vs. +0.18 mL/min/1.73 m(2), respectively; p < 0.0001). MDRD eGFR improved significantly in both CKD treatment arms; however, the increased eGFR in patients without CKD was significantly greater with atorvastatin (+2.08 mL/min/1.73 m(2)) than with pravastatin (−1.04 mL/min/1.73 m(2)). Modest reductions in SUA were observed in both treatment arms, but a greater fall occurred with atorvastatin than with pravastatin (−0.52 vs. −0.09 mg/dL, p < 0.0001). Change in SUA correlated negatively with changes in eGFR and positively with changes in low-density lipoprotein cholesterol. Reports of myalgia were rare (3.6 % CKD; 5.7 % non-CKD), and there were no episodes of rhabdomyolysis. Elevated serum alanine and aspartate transaminase to >3 times the upper limit of normal occurred in 4.4 % of atorvastatin- and 0.2 % of pravastatin-treated patients. CONCLUSION: Intensive management of dyslipidemia in older patients with stable coronary heart disease may have beneficial effects on renal function and SUA