19 research outputs found

    Female Chimpanzees Use Copulation Calls Flexibly to Prevent Social Competition

    Get PDF
    The adaptive function of copulation calls in female primates has been debated for years. One influential idea is that copulation calls are a sexually selected trait, which enables females to advertise their receptive state to males. Male-male competition ensues and females benefit by getting better mating partners and higher quality offspring. We analysed the copulation calling behaviour of wild female chimpanzees (Pan troglodytes schweinfurthii) at Budongo Forest, Uganda, but found no support for the male-male competition hypothesis. Hormone analysis showed that the calling behaviour of copulating females was unrelated to their fertile period and likelihood of conception. Instead, females called significantly more while with high-ranking males, but suppressed their calls if high-ranking females were nearby. Copulation calling may therefore be one potential strategy employed by female chimpanzees to advertise receptivity to high-ranked males, confuse paternity and secure future support from these socially important individuals. Competition between females can be dangerously high in wild chimpanzees, and our results indicate that females use their copulation calls strategically to minimise the risks associated with such competition

    Unravelling the relationship between animal growth and immune response during micro-parasitic infections

    Get PDF
    Background: Both host genetic potentials for growth and disease resistance, as well as nutrition are known to affect responses of individuals challenged with micro-parasites, but their interactive effects are difficult to predict from experimental studies alone. Methodology/Principal Findings: Here, a mathematical model is proposed to explore the hypothesis that a host's response to pathogen challenge largely depends on the interaction between a host's genetic capacities for growth or disease resistance and the nutritional environment. As might be expected, the model predicts that if nutritional availability is high, hosts with higher growth capacities will also grow faster under micro-parasitic challenge, and more resistant animals will exhibit a more effective immune response. Growth capacity has little effect on immune response and resistance capacity has little effect on achieved growth. However, the influence of host genetics on phenotypic performance changes drastically if nutrient availability is scarce. In this case achieved growth and immune response depend simultaneously on both capacities for growth and disease resistance. A higher growth capacity (achieved e.g. through genetic selection) would be detrimental for the animal's ability to cope with pathogens and greater resistance may reduce growth in the short-term. Significance: Our model can thus explain contradicting outcomes of genetic selection observed in experimental studies and provides the necessary biological background for understanding the influence of selection and/or changes in the nutritional environment on phenotypic growth and immune response. © 2009 Doeschl-Wilson et al

    A maternal productive index for beef cows

    No full text

    A comparison of White Leghorns, Australorps, and their reciprocal crosses

    No full text

    A comparison of the performance of single and twin born Corriedale ewes and lambs

    No full text
    corecore