13 research outputs found

    From Sea to Sea: Canada's Three Oceans of Biodiversity

    Get PDF
    Evaluating and understanding biodiversity in marine ecosystems are both necessary and challenging for conservation. This paper compiles and summarizes current knowledge of the diversity of marine taxa in Canada's three oceans while recognizing that this compilation is incomplete and will change in the future. That Canada has the longest coastline in the world and incorporates distinctly different biogeographic provinces and ecoregions (e.g., temperate through ice-covered areas) constrains this analysis. The taxonomic groups presented here include microbes, phytoplankton, macroalgae, zooplankton, benthic infauna, fishes, and marine mammals. The minimum number of species or taxa compiled here is 15,988 for the three Canadian oceans. However, this number clearly underestimates in several ways the total number of taxa present. First, there are significant gaps in the published literature. Second, the diversity of many habitats has not been compiled for all taxonomic groups (e.g., intertidal rocky shores, deep sea), and data compilations are based on short-term, directed research programs or longer-term monitoring activities with limited spatial resolution. Third, the biodiversity of large organisms is well known, but this is not true of smaller organisms. Finally, the greatest constraint on this summary is the willingness and capacity of those who collected the data to make it available to those interested in biodiversity meta-analyses. Confirmation of identities and intercomparison of studies are also constrained by the disturbing rate of decline in the number of taxonomists and systematists specializing on marine taxa in Canada. This decline is mostly the result of retirements of current specialists and to a lack of training and employment opportunities for new ones. Considering the difficulties encountered in compiling an overview of biogeographic data and the diversity of species or taxa in Canada's three oceans, this synthesis is intended to serve as a biodiversity baseline for a new program on marine biodiversity, the Canadian Healthy Ocean Network. A major effort needs to be undertaken to establish a complete baseline of Canadian marine biodiversity of all taxonomic groups, especially if we are to understand and conserve this part of Canada's natural heritage

    Periodicity of propagule expulsion and settlement in the competing native and invasive brown seaweeds, Cystoseira humilis and Sargassum muticum (Phaeophyta)

    No full text
    Dense stands of the invasive species Sargassum muticum (Yendo) Fensholt develop in tidal pools close to its southern distributional limit in Europe, the southwest coast of Portugal. Along this coast, sheltered tidal pools form a specific habitat in which colonization occurs. Invaded pools are originally inhabited by Cystoseira humilis Kützing. Differences in gamete release between the competing native and alien species might be important for the initial settlement and further spread of the invader. Therefore, we tested whether egg expulsion and embryo settlement in both species had the same timing with respect to lunar and tidal cycles. For more than 2 months during the reproductive season egg expulsion and embryo release were monitored daily for each species. Egg expulsion in S. muticum showed a broadly semilunar periodicity peaking around full and new moon (spring tides), when low tides take place in the morning/evening. In contrast, C. humilis egg expulsion showed an asymmetric semilunar-to-lunar periodicity peaking around waning quarter moon, when low tides occur around midday. Embryo settlement detected in pools was low for both species and less periodic. Phase differences in expulsion events between the two species with respect to the semilunar cycle suggest that cues other than the moon are involved in their timing. Our observations suggest that variations in physiological mechanisms and/or environmental conditions result in different patterns of egg expulsion between the two species. This might have consequences for fertilization success, gamete dispersal and survival. It was further found that peaks in egg expulsion and embryo release (i.e. settlement) in S. muticum were much more synchronous at a site in northern Portugal compared with a site close to the current southern distributional limit in south-west Portugal, possibly as a consequence of thermal stress experienced in the south

    Systematics of the marine microfilamentous green algae Uronema curvatum and Urospora microscopica (Chlorophyta)

    No full text
    The microfilamentous green alga Uronema curvatum is widely distributed along the western and eastern coasts of the north Atlantic Ocean where it typically grows on crustose red algae and on haptera of kelps in subtidal habitats. The placement of this marine species in a genus of freshwater Chlorophyceae had been questioned. Molecular phylogenetic analysis of nuclear-encoded small and large subunit rDNA sequences reveal that U. curvatum is closely related to the ulvophycean order Cladophorales with which it shares a number of morphological features, including a siphonocladous level of organization and zoidangial development. The divergent phylogenetic position of U. curvatum, sister to the rest of the Cladophorales, along with a combination of distinctive morphological features, such as the absence of pyrenoids, the diminutive size of the unbranched filaments and the discoid holdfast, warrants the recognition of a separate genus, Okellya, within a new family of Cladophorales, Okellyaceae. The epiphytic Urospora microscopica from Norway, which has been allied with U. curvatum, is revealed as a member of the cladophoralean genus Chaetomorpha and is herein transferred to that genus as C. norvegica nom. nov
    corecore