267 research outputs found
Gross-Neveu Models, Nonlinear Dirac Equations, Surfaces and Strings
Recent studies of the thermodynamic phase diagrams of the Gross-Neveu model
(GN2), and its chiral cousin, the NJL2 model, have shown that there are phases
with inhomogeneous crystalline condensates. These (static) condensates can be
found analytically because the relevant Hartree-Fock and gap equations can be
reduced to the nonlinear Schr\"odinger equation, whose deformations are
governed by the mKdV and AKNS integrable hierarchies, respectively. Recently,
Thies et al have shown that time-dependent Hartree-Fock solutions describing
baryon scattering in the massless GN2 model satisfy the Sinh-Gordon equation,
and can be mapped directly to classical string solutions in AdS3. Here we
propose a geometric perspective for this result, based on the generalized
Weierstrass spinor representation for the embedding of 2d surfaces into 3d
spaces, which explains why these well-known integrable systems underlie these
various Gross-Neveu gap equations, and why there should be a connection to
classical string theory solutions. This geometric viewpoint may be useful for
higher dimensional models, where the relevant integrable hierarchies include
the Davey-Stewartson and Novikov-Veselov systems.Comment: 27 pages, 1 figur
Long-Range Autocorrelations of CpG Islands in the Human Genome
In this paper, we use a statistical estimator developed in astrophysics to study the distribution and organization of features of the human genome. Using the human reference sequence we quantify the global distribution of CpG islands (CGI) in each chromosome and demonstrate that the organization of the CGI across a chromosome is non-random, exhibits surprisingly long range correlations (10 Mb) and varies significantly among chromosomes. These correlations of CGI summarize functional properties of the genome that are not captured when considering variation in any particular separate (and local) feature. The demonstration of the proposed methods to quantify the organization of CGI in the human genome forms the basis of future studies. The most illuminating of these will assess the potential impact on phenotypic variation of inter-individual variation in the organization of the functional features of the genome within and among chromosomes, and among individuals for particular chromosomes
A Sustained Dietary Change Increases Epigenetic Variation in Isogenic Mice
Epigenetic changes can be induced by adverse environmental exposures, such as
nutritional imbalance, but little is known about the nature or extent of these
changes. Here we have explored the epigenomic effects of a sustained nutritional
change, excess dietary methyl donors, by assessing genomic CpG methylation
patterns in isogenic mice exposed for one or six generations. We find stochastic
variation in methylation levels at many loci; exposure to methyl donors
increases the magnitude of this variation and the number of variable loci.
Several gene ontology categories are significantly overrepresented in genes
proximal to these methylation-variable loci, suggesting that certain pathways
are susceptible to environmental influence on their epigenetic states. Long-term
exposure to the diet (six generations) results in a larger number of loci
exhibiting epigenetic variability, suggesting that some of the induced changes
are heritable. This finding presents the possibility that epigenetic variation
within populations can be induced by environmental change, providing a vehicle
for disease predisposition and possibly a substrate for natural selection
High Resolution Methylome Map of Rat Indicates Role of Intragenic DNA Methylation in Identification of Coding Region
DNA methylation is crucial for gene regulation and maintenance of genomic stability. Rat has been a key model system in understanding mammalian systemic physiology, however detailed rat methylome remains uncharacterized till date. Here, we present the first high resolution methylome of rat liver generated using Methylated DNA immunoprecipitation and high throughput sequencing (MeDIP-Seq) approach. We observed that within the DNA/RNA repeat elements, simple repeats harbor the highest degree of methylation. Promoter hypomethylation and exon hypermethylation were common features in both RefSeq genes and expressed genes (as evaluated by proteomic approach). We also found that although CpG islands were generally hypomethylated, about 6% of them were methylated and a large proportion (37%) of methylated islands fell within the exons. Notably, we obeserved significant differences in methylation of terminal exons (UTRs); methylation being more pronounced in coding/partially coding exons compared to the non-coding exons. Further, events like alternate exon splicing (cassette exon) and intron retentions were marked by DNA methylation and these regions are retained in the final transcript. Thus, we suggest that DNA methylation could play a crucial role in marking coding regions thereby regulating alternative splicing. Apart from generating the first high resolution methylome map of rat liver tissue, the present study provides several critical insights into methylome organization and extends our understanding of interplay between epigenome, gene expression and genome stability
Isolation and Maintenance-Free Culture of Contractile Myotubes from Manduca sexta Embryos
Skeletal muscle tissue engineering has the potential to treat tissue loss and degenerative diseases. However, these systems are also applicable for a variety of devices where actuation is needed, such as microelectromechanical systems (MEMS) and robotics. Most current efforts to generate muscle bioactuators are focused on using mammalian cells, which require exacting conditions for survival and function. In contrast, invertebrate cells are more environmentally robust, metabolically adaptable and relatively autonomous. Our hypothesis is that the use of invertebrate muscle cells will obviate many of the limitations encountered when mammalian cells are used for bioactuation. We focus on the tobacco hornworm, Manduca sexta, due to its easy availability, large size and well-characterized muscle contractile properties. Using isolated embryonic cells, we have developed culture conditions to grow and characterize contractile M. sexta muscles. The insect hormone 20-hydroxyecdysone was used to induce differentiation in the system, resulting in cells that stained positive for myosin, contract spontaneously for the duration of the culture, and do not require media changes over periods of more than a month. These cells proliferate under normal conditions, but the application of juvenile hormone induced further proliferation and inhibited differentiation. Cellular metabolism under normal and low glucose conditions was compared for C2C12 mouse and M. sexta myoblast cells. While differentiated C2C12 cells consumed glucose and produced lactate over one week as expected, M. sexta muscle did not consume significant glucose, and lactate production exceeded mammalian muscle production on a per cell basis. Contractile properties were evaluated using index of movement analysis, which demonstrated the potential of these cells to perform mechanical work. The ability of cultured M. sexta muscle to continuously function at ambient conditions without medium replenishment, combined with the interesting metabolic properties, suggests that this cell source is a promising candidate for further investigation toward bioactuator applications
A Visual Metaphor Describing Neural Dynamics in Schizophrenia
Background: In many scientific disciplines the use of a metaphor as an heuristic aid is not uncommon. A well known example in somatic medicine is the 'defense army metaphor' used to characterize the immune system. In fact, probably a large part of the everyday work of doctors consists of 'translating' scientific and clinical information (i.e. causes of disease, percentage of succes versus risk of side-effects) into information tailored to the needs and capacities of the individual patient. The ability to do so in an effective way is at least partly what makes a clinician a good communicator. Schizophrenia is a severe psychiatric disorder which affects approximately 1% of the population. Over the last two decades a large amount of molecular-biological, imaging and genetic data have been accumulated regarding the biological underpinnings of schizophrenia. However, it remains difficult to understand how the characteristic symptoms of schizophrenia such as hallucinations and delusions are related to disturbances on the molecular-biological level. In general, psychiatry seems to lack a conceptual framework with sufficient explanatory power to link the mental- and molecular-biological domains. Methodology/Principal Findings: Here, we present an essay-like study in which we propose to use visualized concepts stemming from the theory on dynamical complex systems as a 'visual metaphor' to bridge the mental- and molecular-biological domains in schizophrenia. We first describe a computer model of neural information processing; we show how the information processing in this model can be visualized, using concepts from the theory on complex systems. We then describe two computer models which have been used to investigate the primary theory on schizophrenia, the neurodevelopmental model, and show how disturbed information processing in these two computer models can be presented in terms of the visual metaphor previously described. Finally, we describe the effects of dopamine neuromodulation, of which disturbances have been frequently described in schizophrenia, in terms of the same visualized metaphor. Conclusions/Significance: The conceptual framework and metaphor described offers a heuristic tool to understand the relationship between the mental- and molecular-biological domains in an intuitive way. The concepts we present may serve to facilitate communicatio
The incidence of unpleasant dreams after sub-anaesthetic ketamine
Ketamine is an N-methyl-D-aspartate (NMDA)receptor antagonist with psychotogenic effects and for whichthere are diverse reports of whether pleasant or unpleasantdreams result during anaesthesia, post-operatively or aftersub-anaesthetic use. The aim was to assess in healthy volunteers the incidence ofunpleasant dreams over the three nights after receiving asub-anaesthetic dose of ketamine, in comparison to placebo,and with retrospective home nightmare frequency as acovariate.Thirty healthy volunteers completed questionnairesabout retrospective home dream recall and were then giveneither ketamine or placebo. Ketamine resulted in significantly more meandream unpleasantness relative to placebo and caused athreefold increase in the odds ratio for the incidence of anunpleasant dream. The number of dreams reported over thethree nights did not differ between the groups. Theincidence of unpleasant dreams after ketamine use waspredicted by retrospectively assessed nightmare frequencyat home.Ketamine causes unpleasant dreams over thethree post-administration nights. This may be evidence of aresidual psychotogenic effect that is not found on standardself-report symptomatology measures or a result of disturbedsleep electrophysiology. The results have theoretical implications for the relationship between nightmares and schizotypy
Integrated analysis of DNA methylation and gene expression reveals specific signaling pathways associated with platinum resistance in ovarian cancer
<p>Abstract</p> <p>Background</p> <p>Cisplatin and carboplatin are the primary first-line therapies for the treatment of ovarian cancer. However, resistance to these platinum-based drugs occurs in the large majority of initially responsive tumors, resulting in fully chemoresistant, fatal disease. Although the precise mechanism(s) underlying the development of platinum resistance in late-stage ovarian cancer patients currently remains unknown, CpG-island (CGI) methylation, a phenomenon strongly associated with aberrant gene silencing and ovarian tumorigenesis, may contribute to this devastating condition.</p> <p>Methods</p> <p>To model the onset of drug resistance, and investigate DNA methylation and gene expression alterations associated with platinum resistance, we treated clonally derived, drug-sensitive A2780 epithelial ovarian cancer cells with increasing concentrations of cisplatin. After several cycles of drug selection, the isogenic drug-sensitive and -resistant pairs were subjected to global CGI methylation and mRNA expression microarray analyses. To identify chemoresistance-associated, biological pathways likely impacted by DNA methylation, promoter CGI methylation and mRNA expression profiles were integrated and subjected to pathway enrichment analysis.</p> <p>Results</p> <p>Promoter CGI methylation revealed a positive association (Spearman correlation of 0.99) between the total number of hypermethylated CGIs and GI<sub>50 </sub>values (<it>i.e</it>., increased drug resistance) following successive cisplatin treatment cycles. In accord with that result, chemoresistance was reversible by DNA methylation inhibitors. Pathway enrichment analysis revealed hypermethylation-mediated repression of cell adhesion and tight junction pathways and hypomethylation-mediated activation of the cell growth-promoting pathways PI3K/Akt, TGF-beta, and cell cycle progression, which may contribute to the onset of chemoresistance in ovarian cancer cells.</p> <p>Conclusion</p> <p>Selective epigenetic disruption of distinct biological pathways was observed during development of platinum resistance in ovarian cancer. Integrated analysis of DNA methylation and gene expression may allow for the identification of new therapeutic targets and/or biomarkers prognostic of disease response. Finally, our results suggest that epigenetic therapies may facilitate the prevention or reversal of transcriptional repression responsible for chemoresistance and the restoration of sensitivity to platinum-based chemotherapeutics.</p
Влияние фосфатных связующих на физико-механические свойства периклазохромитовых огнеупоров
У данній статті наведено та порівняно фізико-механічні властивості периклазо-хромітових матеріалів в залежності від різних типів фосфатних зв’язуючих та введення різних домішок. Визначено, що найбільш раціональним є введення триполіфосфату натрію.In given clause are resulted and the physycal-mechanical properties periclase-cgromite of materials are compared depending on different of types phosphate binding and introduction of the various additives. Is determined, that most rational is the introduction treepolyphosphate sodume
- …