68 research outputs found

    Effect of chronic ethanol exposure on rat ventilatory responses to hypoxia and hypercapnia

    Get PDF
    OBJECTIVE: The effect of chronic ethanol exposure on chemoreflexes has not been extensively studied in experimental animals. Therefore, this study tested the hypothesis that known ethanol-induced autonomic, neuroendocrine and cardiovascular changes coincide with increased chemoreflex sensitivity, as indicated by increased ventilatory responses to hypoxia and hypercapnia. METHODS: Male Wistar rats were subjected to increasing ethanol concentrations in their drinking water (first week: 5% v/v, second week: 10% v/v, third and fourth weeks: 20% v/v). At the end of each week of ethanol exposure, ventilatory parameters were measured under basal conditions and in response to hypoxia (evaluation of peripheral chemoreflex sensitivity) and hypercapnia (evaluation of central chemoreflex sensitivity). RESULTS: Decreased respiratory frequency was observed in rats exposed to ethanol from the first until the fourth week, whereas minute ventilation remained unchanged. Moreover, we observed an increased tidal volume in the second through the fourth week of exposure. The minute ventilation responses to hypoxia were attenuated in the first through the third week but remained unchanged during the last week. The respiratory frequency responses to hypoxia in ethanol-exposed rats were attenuated in the second through the third week but remained unchanged in the first and fourth weeks. There was no significant change in tidal volume responses to hypoxia. With regard to hypercapnic responses, no significant changes in ventilatory parameters were observed. CONCLUSIONS: Our data are consistent with the notion that chronic ethanol exposure does not increase peripheral or central chemoreflex sensitivity

    Brain Pathways Involved in the Modulatory Effects of Noradrenaline in Lateral Septal Area on Cardiovascular Responses

    Get PDF
    We have previously reported that stimulation of alpha-1 adrenoceptors by noradrenaline (NA) injected into the lateral septal area (LSA) of anaesthetized rats causes pressor and bradycardic responses that are mediated by acute vasopressin release into the circulation through activation of the paraventricular nucleus (PVN). Although the PVN is the final structure of this pathway, the LSA has no direct connections with the PVN, suggesting that other structures may connect these areas. To address this issue, the present study employed c-Fos immunohistochemistry to investigate changes caused by NA microinjection into the LSA in neuronal activation in brain structures related to systemic vasopressin release. NA microinjected in the LSA caused pressor and bradycardic responses, which were blocked by intraseptal administration of alpha-1 adrenoceptor antagonist (WB4101, 10 nmol/200 nL) or systemic V-1 receptor antagonist (dTyr(CH2)5(Me)AVP, 50 mu g/kg). NA also increased c-Fos immunoreactivity in the prelimbic cortex (PL), infralimbic cortex (IL), dorsomedial periaqueductal gray (dmPAG), bed nucleus of the stria terminalis (BNST), PVN, and medial amygdala (MeA). No differences in the diagonal band of Broca, cingulate cortex, and dorsolateral periaqueductal gray (dlPAG) were found. Systemic administration of the vasopressin receptor antagonist dTyr AVP (CH2)5(Me) did not change the increase in c-Fos expression induced by intra-septal NA. This latter effect, however, was prevented by local injection of the alpha-1 adrenoceptor antagonist WB4101. These results suggest that areas such as the PL, IL, dmPAG, BNST, MeA, and PVN could be part of a circuit responsible for vasopressin release after activation of alpha-1 adrenoceptors in the LSA.CAPES [PNPD0176087]CNPqFAPES

    Lateral septal area alpha(1)-and alpha(2)-adrenoceptors differently modulate baroreflex activity in unanaesthetized rats

    Get PDF
    The lateral septal area (LSA) is a limbic structure involved in autonomic, neuroendocrine and behavioural responses. An inhibitory influence of the LSA on baroreflex activity has been reported; however, the local neurotransmitter involved in this modulation is still unclear. In the present study, we verified the involvement of local LSA adrenoceptors in modulating cardiac baroreflex activity in unanaesthetized rats. Bilateral microinjection of the selective a1-adrenoceptor antagonist WB4101 (10 nmol in a volume of 100 nl) into the LSA decreased baroreflex bradycardia evoked by blood pressure increases, but had no effect on reflex tachycardia evoked by blood pressure decreases. Nevertheless, bilateral administration of the selective a2-adrenoceptor antagonist RX821002 (10 nmol in 100 nl) increased baroreflex tachycardia without affecting reflex bradycardia. Treatment of the LSA with a cocktail containing WB4101 and RX821002 decreased baroreflex bradycardia and increased reflex tachycardia. The non-selective beta-adrenoceptor antagonist propranolol (10 nmol in 100 nl) did not affect either reflex bradycardia or tachycardia. Microinjection of noradrenaline into the LSA increased reflex bradycardia and decreased the baroreflex tachycardic response, an opposite effect compared with those observed after double blockade of a1- and a2-adrenoceptors, and this effect of noradrenaline was blocked by local LSA pretreatment with the cocktail containing WB4101 and RX821002. The present results provide advances in our understanding of the baroreflex neural circuitry. Taken together, data suggest that local LSA a1- and a2-adrenoceptors modulate baroreflex control of heart rate differently. Data indicate that LSA a1-adrenoceptors exert a facilitatory modulation on baroreflex bradycardia, whereas local a2-adrenoceptors exert an inhibitory modulation on reflex tachycardia.Coordenacao de Aperfeicoamento de Pessoal de Nivel SuperiorNational Council for Scientific and Technological Development [480550/2007-7, 305996/2008-8, 474177/2010-6]Sao Paulo Research Foundation [2009/03187-9, 2010/16192-8

    Behavioral and Autonomic Responses to Acute Restraint Stress Are Segregated within the Lateral Septal Area of Rats

    Get PDF
    Background: The Lateral Septal Area (LSA) is involved with autonomic and behavior responses associated to stress. In rats, acute restraint (RS) is an unavoidable stress situation that causes autonomic (body temperature, mean arterial pressure (MAP) and heart rate (HR) increases) and behavioral (increased anxiety-like behavior) changes in rats. The LSA is one of several brain regions that have been involved in stress responses. The aim of the present study was to investigate if the neurotransmission blockade in the LSA would interfere in the autonomic and behavioral changes induced by RS. Methodology/Principal Findings: Male Wistar rats with bilateral cannulae aimed at the LSA, an intra-abdominal datalogger (for recording internal body temperature), and an implanted catheter into the femoral artery (for recording and cardiovascular parameters) were used. They received bilateral microinjections of the non-selective synapse blocker cobalt chloride (CoCl2, 1 mM / 100 nL) or vehicle 10 min before RS session. The tail temperature was measured by an infrared thermal imager during the session. Twenty-four h after the RS session the rats were tested in the elevated plus maze (EPM). Conclusions/Significance: Inhibition of LSA neurotransmission reduced the MAP and HR increases observed during RS. However, no changes were observed in the decrease in skin temperature and increase in internal body temperature observed during this period. Also, LSA inhibition did not change the anxiogenic effect induced by RS observed 24 h later in the EPM. The present results suggest that LSA neurotransmission is involved in the cardiovascular but not the temperatur

    Cardiovascular effects of L-glutamate injected in the medial prefrontal cortex of spontaneously hypertensive rats

    No full text
    We have previously reported that L-glutamate (L-glu) injected into the ventral portion of medial prefrontal cortex (vMPFC) of unanesthetized normotensive Wistar rats elicited cardiovascular responses. In the present study we investigated whether the spontaneously hypertensive rat (SHR) exhibit abnormal cardiovascular responses after L-glu microinjection in the vMPFC. Microinjections of L-glu (3, 9, 27, 81 or 150 nmol/200 nl) caused long-lasting dose-related depressor and bradycardiac responses in unanesthetized SHR (n = 6, each dose). Pressor and tachycardiac responses were evoked after the injection of 81 nmol of L-glu in the vMPFC of normotensive Wistar rats (n=6). Systemic pretreatment with the betal-adrenoceptor antagonist atenolol (1.5 mg/kg, i.v.) had no effect on L-glu cardiovascular responses evoked in the SHR (n=5). However, the treatment with the muscarinic antagonist homatropine methyl bromide (I mg/kg, i.v.) blocked the bradycardiac response to L-glu, without significant effects on depressor response evoked by L-glu in the SHR (n = 5). These results indicate that the bradycardiac response to the injection of L-glu injection in the vMPFC is due to activation of the parasympathetic system and not to inhibition of the cardiac sympathetic input. In conclusion, results indicate opposite cardiovascular responses when L-glu was microinjected in the vMPFC of unanesthetized SHR or normotensive. The bradycardiac response observed in the SHR was due to parasympathetic activation and was not affected by pharmacological blockade of the cardiac sympathetic output. (C) 2007 Elsevier B.V. All rights reserved

    The anxiolytic-like effects of cannabidiol injected into the bed nucleus of the stria terminalis are mediated by 5-HT1A receptors

    No full text
    Cannabidiol (CBD) is a non-psychotomimetic compound from Cannabis sativa that induces anxiolytic-like effects in rodents and humans after systemic administration. Previous results from our group showed that CBD injection into the bed nucleus of the stria terminalis (BNST) attenuates conditioned aversive responses. The aim of this study was to further investigate the role of this region on the anxiolytic effects of the CBD. Moreover, considering that CBD can activate 5-HT1A receptors, we also verified a possible involvement of these receptors in those effects. Male Wistar rats received injections of CBD (15, 30, or 60 nmol) into the BNST and were exposed to the elevated plus-maze (EPM) or to the Vogel conflict test (VCT), two widely used animal models of anxiety. CBD increased open arms exploration in the EPM as well as the number of punished licks in the VCT, suggesting an anxiolytic-like effect. The drug did not change the number of entries into the enclosed arms of the EPM nor interfered with water consumption or nociceptive threshold, discarding potential confounding factors in the two tests. Moreover, pretreatment with the 5-HT1A receptor antagonist WAY100635 (0.37 nmol) blocked the effects of CBD in both models. These results give further support to the proposal that BNST is involved in the anxiolytic-like effects of CBD observed after systemic administration, probably by facilitating local 5-HT1A receptor-mediated neurotransmission.CNPq[130171/2009-3]CNPq[480550/2007-7]CNPq[305996/2008-8]FAPESP[2009/03187-9]FAPESP[2007/03685-3]FAEP

    Activation of cannabinoid CB, receptors in the dorsolateral periaqueductal gray induces anxiolytic effects in rats submitted to the Vogel conflict test

    No full text
    There are contradictory results concerning the effects of systemic injections of cannabinoid agonists in anxiety-induced behavioral changes. Direct drug administration into brain structures related to defensive responses could help to clarify the role of cannabinoids in these changes. Activation of cannabinoid CB, receptors in the dorsolateral periaqueductal gray induces anxiolytic-like effects in the elevated plus maze. The aim of this work was to verify if facilitation of endocannabinoid-mediated neurotransmission in this region would also produce anxiolytic-like effects in another model of anxiety, the Vogel conflict test. Male Wistar rats (n = 5-9/group) with cannulae aimed at the dorsolateral periaqueductal gray were water deprived for 24 h and pre-exposed to the apparatus where they were allowed to drink for 3 min. After another 24 h-period of water deprivation, they received the microinjections and, 10 min later, were placed into the experimental box. in this box an electrical shock (0.5 nnA, 2 s) was delivered in the spout of a drinking bottle at every twenty licks. The animals received a first microinjection of vehicle (0.2 mu l) or AM251 (a cannabinoid CB1 receptor antagonist; 100 pmol) followed, 5 min later, by a second microinjection of vehicle, anandamide (an endocannabinoid, 5 pmol), AM404 (an inhibitor of anandamide uptake, 50 pmol) or URB597 (an inhibitor of Fatty Acid Amide Hydrolase, 0.01 or 0.1 nmol). Anandamide, AM404 and URB597 (0.01 nmol) increased the total number of punished licks. These effects were prevented by AM251. The results give further support to the proposal that facilitation of CB1 receptor-mediated endocannabinoid neurotransmission in the dorsolateral periaqueductal gray modulates defensive responses. (C) 2008 Elsevier B.V. All rights reserved.FAPESPCNPqCAPE

    Cannabidiol inhibits the hyperphagia induced by cannabinoid-1 or serotonin-1A receptor agonists

    Get PDF
    Delta 9-THC is a component of Cannabis sativa that increases food intake in animals and humans, an effect prevented by selective CB1 receptor antagonists. Cannabidiol (CBD) is another constituent of this plant that promotes several opposite neuropharmacological effects compared to Delta 9-THC. CBD mechanisms of action are still not clear, but under specific experimental conditions it can antagonize the effects of cannabinoid agonists, block the reuptake of anandamide and act as an agonist of 5-HT1A receptors. Since both the cannabinoid and serotoninergic systems have been implicated in food intake control, the aim of the present work was to investigate the effects caused by CBD on hyperphagia induced by agonists of CB1 or 5-HT1A receptors. Fed or fasted Wistar rats received intraperitoneal (i.p.) injections of CBD (1, 10 and 20 mg/kg) and food intake was measured 30 min later for 1 h. Moreover, additional fed or fasted groups received, after pretreatment with CBD (20 mg/kg) or vehicle, i.p. administration of vehicle, a CBI receptor agonist WIN55,212-2 (2 mg/kg) or a 5-HT1A receptor agonist 8-OH-DPAT (1 mg/kg) and were submitted to the food intake test for 1 h. CBD by itself did not change food intake in fed or fasted rats. However, it prevented the hyperphagic effects induced by WIN55,212-2 or 8-OH-DPAT. These results show that CBD can interfere with food intake changes induced by a CB1 or 5-HT1A receptor agonist, suggesting that its role as a possible food intake regulator should be further investigate. (C) 2011 Elsevier Inc. All rights reserved

    Cannabidiol inhibitory effect on marble-burying behaviour: involvement of CB1 receptors

    No full text
    Cannabidiol (CBD) is a major nonpsychotomimetic component of Cannabis sativa that has been shown to have an anxiolytic effect in human and animal models. Earlier studies suggest that these effects involve facilitation of serotonin, a neurotransmitter that has also been related to obsessive-compulsive disorder. On the basis of this evidence, this study investigated the effects of CBD in C57BL/6J mice submitted to the marble-burying test (MBT), an animal model proposed to reflect compulsive behaviour. CBD (15, 30 and 60 mg/kg) induced a significant decrease in the number of buried marbles compared with controls (34, 41 and 48%, respectively). A similar, although larger, decrease was also found after the serotonin selective reuptake inhibitor paroxetine (10 mg/kg, 77% decrease) and the benzodiazepine diazepam (2.5 mg/kg, 84% decrease). The effect of CBD (30 mg/kg) was still significant after 7 days of daily repeated administration, whereas the effect of diazepam disappeared. Pretreatment with WAY100635 (3 mg/kg), a 5HT1A receptor antagonist, prevented the effects of paroxetine but failed to alter those of CBD. These latter effects, however, were prevented by pretreatment with the CB1 receptor antagonist AM251 (1 mg/kg). These results indicated that CBD and paroxetine decrease the number of buried marbles in the MBT through distinct pharmacological mechanisms. They also suggest a potential role of drugs acting on the cannabinoid system in modulating compulsive behaviour. Behavioural Pharmacology 21: 353-358 (C) 2010 Wolters Kluwer Health | Lippincott Williams & Wilkins.FAPESPCNP

    Both alpha(1)- and alpha(2)-adrenoceptors in the Insular Cortex Are Involved in the Cardiovascular Responses to Acute Restraint Stress in Rats

    Get PDF
    The insular cortex (IC) is a limbic structure involved in cardiovascular responses observed during aversive threats. However, the specific neurotransmitter mediating IC control of cardiovascular adjustments to stress is yet unknown. Therefore, in the present study we investigated the role of local IC adrenoceptors in the cardiovascular responses elicited by acute restraint stress in rats. Bilateral microinjection of different doses (0.3, 5, 10 and 15 nmol/100 nl) of the selective alpha(1)-adrenoceptor antagonist WB4101 into the IC reduced both the arterial pressure and heart rate increases elicited by restraint stress. However, local IC treatment with different doses (0.3, 5, 10 and 15 nmol/100 nl) of the selective alpha(2)-adrenoceptor antagonist RX821002 reduced restraint-evoked tachycardia without affecting the pressor response. The present findings are the first direct evidence showing the involvement of IC adrenoceptors in cardiovascular adjustments observed during aversive threats. Our findings indicate that IC noradrenergic neurotransmission acting through activation of both alpha(1)- and alpha(2)-adrenoceptors has a facilitatory influence on pressor response to acute restraint stress. Moreover, IC alpha(1)-adrenoceptors also play a facilitatory role on restraint-evoked tachycardiac response.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP
    • …
    corecore