17,256 research outputs found

    Extracellular matrix mimics using hyaluronan-based biomaterials

    Get PDF
    Hyaluronan (HA) is a critical element of the extracellular matrix (ECM). The regulated synthesis and degradation of HA modulates the ECM chemical and physical properties that, in turn, influence cellular behavior. HA triggers signaling pathways associated with the adhesion, proliferation, migration, and differentiation of cells, mediated by its interaction with specific cellular receptors or by tuning the mechanical properties of the ECM. This review summarizes the recent advances on strategies used to mimic the HA present in the ECM to study healthy or pathological cellular behavior. This includes the development of HA-based 2D and 3D in vitro tissue models for the seeding and encapsulation of cells, respectively, and HA particles as carriers for the targeted delivery of therapeutic agents.The authors acknowledge thefinancial support from the European Commission’s H2020 programme, under grantagreements H2020-WIDESPREAD-2014-668983-FORECAST, and H2020-MSCA-RISE-2019-872648-MEPHOS. S.A.acknowledges the Portuguese Foundation for Science and Technology (FCT) for her PhD grant (SFRH/BD/112075/2015)

    Finite size analysis of a two-dimensional Ising model within a nonextensive approach

    Full text link
    In this work we present a thorough analysis of the phase transitions that occur in a ferromagnetic 2D Ising model, with only nearest-neighbors interactions, in the framework of the Tsallis nonextensive statistics. We performed Monte Carlo simulations on square lattices with linear sizes L ranging from 32 up to 512. The statistical weight of the Metropolis algorithm was changed according to the nonextensive statistics. Discontinuities in the m(T) curve are observed for q0.5q\leq 0.5. However, we have verified only one peak on the energy histograms at the critical temperatures, indicating the occurrence of continuous phase transitions. For the 0.5<q1.00.5<q\leq 1.0 regime, we have found continuous phase transitions between the ordered and the disordered phases, and determined the critical exponents via finite-size scaling. We verified that the critical exponents α\alpha , β\beta and γ\gamma depend on the entropic index qq in the range 0.5<q1.00.5<q\leq 1.0 in the form α(q)=(10q233q+23)/20\alpha (q)=(10 q^{2}-33 q+23)/20, β(q)=(2q1)/8\beta (q)=(2 q-1)/8 and γ(q)=(q2q+7)/4\gamma (q)=(q^{2}-q+7)/4. On the other hand, the critical exponent ν\nu does not depend on qq. This suggests a violation of the scaling relations 2β+γ=dν2 \beta +\gamma =d \nu and α+2β+γ=2\alpha +2 \beta +\gamma =2 and a nonuniversality of the critical exponents along the ferro-paramagnetic frontier.Comment: accepted for publication in Phys. Rev.

    On the determination of the spin of the black hole in Cyg X-1 from X-ray reflection spectra

    Get PDF
    The spin of Cygnus X-1 is measured by fitting reflection models to Suzaku data covering the energy band 0.9-400 keV. The inner radius of the accretion disc is found to lie within 2 gravitational radii (r_g=GM/c^2) and a value for the dimensionless black hole spin is obtained of 0.97^{+0.014}_{-0.02}. This agrees with recent measurements using the continuum fitting method by Gou et al. and of the broad iron line by Duro et al. The disc inclination is measured at 23.7^{+6.7}_{-5.4} deg, which is consistent with the recent optical measurement of the binary system inclination by Orosz et al of 27+/-0.8 deg. We pay special attention to the emissivity profile caused by irradiation of the inner disc by the hard power-law source. The X-ray observations and simulations show that the index q of that profile deviates from the commonly used, Newtonian, value of 3 within 3r_g, steepening considerably within 2r_g, as expected in the strong gravity regime.Comment: 7 pages, 10 figures, MNRAS in pres

    Influence of the external pressure on the quantum correlations of molecular magnets

    Full text link
    The study of quantum correlations in solid state systems is a large avenue for research and their detection and manipulation are an actual challenge to overcome. In this context, we show by using first-principles calculations on the prototype material KNaCuSi4_{4}O10_{10} that the degree of quantum correlations in this spin cluster system can be managed by external hydrostatic pressure. Our results open the doors for research in detection and manipulation of quantum correlations in magnetic systems with promising applications in quantum information science

    Experimental determination of the non-extensive entropic parameter qq

    Full text link
    We show how to extract the qq parameter from experimental data, considering an inhomogeneous magnetic system composed by many Maxwell-Boltzmann homogeneous parts, which after integration over the whole system recover the Tsallis non-extensivity. Analyzing the cluster distribution of La0.7_{0.7}Sr0.3_{0.3}MnO3_{3} manganite, obtained through scanning tunnelling spectroscopy, we measure the qq parameter and predict the bulk magnetization with good accuracy. The connection between the Griffiths phase and non-extensivity is also considered. We conclude that the entropic parameter embodies information about the dynamics, the key role to describe complex systems.Comment: Submitted to Phys. Rev. Let
    corecore