10 research outputs found

    Asperisporium and Pantospora (Mycosphaerellaceae): epitypifications and phylogenetic placement

    Get PDF
    The species-rich family Mycosphaerellaceae contains considerable morphological diversity and includes numerous anamorphic genera, many of which are economically important plant pathogens. Recent revisions and phylogenetic research have resulted in taxonomic instability. Ameliorating this problem requires phylogenetic placement of type species of key genera. We present an examination of the type species of the anamorphic Asperisporium and Pantospora. Cultures isolated from recent port interceptions were studied and described, and morphological studies were made of historical and new herbarium specimens. DNA sequence data from the ITS region and nLSU were generated from these type species, analysed phylogenetically, placed into an evolutionary context within Mycosphaerellaceae, and compared to existing phylogenies. Epitype specimens associated with living cultures and DNA sequence data are designated herein. Asperisporium caricae, the type of Asperisporium and cause of a leaf and fruit spot disease of papaya, is closely related to several species of Passalora including P. brachycarpa. The status of Asperisporium as a potential generic synonym of Passalora remains unclear. The monotypic genus Pantospora, typified by the synnematous Pantospora guazumae, is not included in Pseudocercospora sensu stricto or sensu lato. Rather, it represents a distinct lineage in the Mycosphaerellaceae in an unresolved position near Mycosphaerella microsora

    Phylogenetic diversity of insecticolous fusaria inferred from multilocus DNA sequence data and their molecular identification via FUSARIUM-ID and Fusarium MLST

    Get PDF
    We constructed several multilocus DNA sequence datasets to assess the phylogenetic diversity of insecticolous fusaria, especially focusing on those housed at the Agricultural Research Service Collection of Entomopathogenic Fungi (ARSEF), and to aid molecular identifications of unknowns via the FUSARIUM-ID and Fusarium MLST online databases and analysis packages. Analyses of a 190-taxon, two-locus dataset, which included 159 isolates from insects, indicated that: (i) insect-associated fusaria were nested within 10 species complexes spanning the phylogenetic breadth of Fusarium, (ii) novel, putatively unnamed insecticolous species were nested within 8/10 species complexes and (iii) Latin binomials could be applied with confidence to only 18/58 phylogenetically distinct fusaria associated with pest insects. Phylogenetic analyses of an 82-taxon, three-locus dataset nearly fully resolved evolutionary relationships among the 10 clades containing insecticolous fusaria. Multilocus typing of isolates within four species complexes identified surprisingly high genetic diversity in that 63/65 of the fusaria typed represented newly discovered haplotypes. The DNA sequence data, together with corrected ABI sequence chromatograms and alignments, have been uploaded to the following websites dedicated to identifying fusaria: FUSARIUM-ID (http://isolate.fusariumdb.org) a

    A multigene molecular phylogenetic assessment of true morels (Morchella) in Turkey

    No full text
    PubMedID: 20580850A collection of 247 true morels (Morchella spp.) primarily from the Mediterranean and Aegean Regions of Southern Turkey, were analyzed for species diversity using partial RNA polymerase I (RPB1) and nuclear ribosomal large subunit (LSU) rDNA gene sequences. Based on the result of this initial screen, 62 collections representing the full range of genetic diversity sampled were subjected to multigene phylogenetic species recognition based on genealogical concordance (GCPSR). The 62-taxon dataset consisted of partial sequences from three nuclear protein-coding genes, RNA polymerase I (RPB1), RNA polymerase II (RPB2), translation elongation factor (EF1-?), and partial LSU rDNA gene sequences. Phylogenetic analyses of the individual and combined datasets, using maximum parsimony (MP) and maximum likelihood (ML), yielded nearly fully resolved phylogenies that were highly concordant topologically. GCPSR analysis of the 62-taxon dataset resolved 15 putative phylogenetically distinct species. The early diverging Elata (black morels) and Esculenta Clades (yellow morels) were represented, respectively, by 13 and two species. Because a Latin binomial can be applied with confidence to only one of the 15 species (Morchella semilibera), species were identified by clade (Mel for Elata and Mes for Esculenta) followed by a unique Arabic number for each species within these two clades. Eight of the species within the Elata Clade appear to be novel, including all seven species within the Mel-20-to-31 subclade and its sister designated Mel-25. Results of the present study provide essential data for ensuring the sustainability of morel harvests through the formulation of sound conservation policies. © 2010.Center for Outcomes Research and Evaluation, Yale School of Medicine ÇÜ-BAP-ZF2009D41 Çukurova ÜniversitesiSpecial thanks are due the Scientific and Technological Research Council of Turkey (TUBITAK) and the Çukurova University, Scientific Research Projects Coordinating Office (ÇÜ-BAP-ZF2009D41) for supporting the studies of HT at NCAUR, Stacy Sink for excellent technical assistance, Deb Palmquist for assistance with the statistical analyses, Don Fraser for preparation of the publication figures, and Nathane Orwig for running the DNA sequences in the NCAUR DNA core facility. The mention of trade products or firm names does not imply that the US Department of Agriculture recommends them over similar products or other firms not mentioned. Appendix

    Phylogenetic analyses of RPB1 and RPB2 support a middle Cretaceous origin for a clade comprising all agriculturally and medically important fusaria

    No full text
    Fusarium (Hypocreales, Nectriaceae) is one of the most economically important and systematically challenging groups of mycotoxigenic phytopathogens and emergent human pathogens. We conducted maximum likelihood (ML), maximum parsimony (MP) and Bayesian (B) analyses on partial DNA-directed RNA polymerase II largest (RPB1) and second largest subunit (RPB2) nucleotide sequences of 93 fusaria to infer the first comprehensive and well-supported phylogenetic hypothesis of evolutionary relationships within the genus and 20 of its near relatives. Our analyses revealed that Cylindrocarpon formed a basal monophyletic sister to a ‘terminal Fusarium clade’ (TFC) comprising 20 strongly supported species complexes and nine monotypic lineages, which we provisionally recognize as Fusarium (hypothesis F1). The basal-most divergences within the TFC were only significantly supported by Bayesian posterior probabilities (B-PP 0.99–1). An internode of the remaining TFC, however, was strongly supported by MP and ML bootstrapping and B-PP (hypothesis F2). Analysis of seven Fusarium genome sequences and Southern analysis of fusaria elucidated the distribution of genes required for synthesis of 26 families of secondary metabolites within the phylogenetic framework. Diversification time estimates date the origin of the TFC to the middle Cretaceous 91.3 million years ago. We also dated the origin of several agriculturally important secondary metabolites as well as the lineage responsible for Fusarium head blight of cereals. Dating of several plant-associated species complexes suggests their evolution may have been driven by angiosperm diversification during the Miocene. Our results support two competing hypotheses for the circumscription of Fusarium and provide a framework for future comparative phylogenetic and genomic analyses of this agronomically and medically important genus

    One fungus, one name: defining the genus Fusarium in a scientifically robust way that preserves longstanding use

    No full text
    In this letter, we advocate recognizing the genus Fusarium as the sole name for a group that includes virtually all Fusarium species of importance in plant pathology, mycotoxicology, medicine, and basic research. This phylogenetically guided circumscription will free scientists from any obligation to use other genus names, including teleomorphs, for species nested within this clade, and preserve the application of the name Fusarium in the way it has been used for almost a century. Due to recent changes in the International Code of Nomenclature for algae, fungi, and plants, this is an urgent matter that requires community attention. The alternative is to break the longstanding concept of Fusarium into nine or more genera, and remove important taxa such as those in the F. solani species complex from the genus, a move we believe is unnecessary. Here we present taxonomic and nomenclatural proposals that will preserve established research connections and facilitate communication within and between research communities, and at the same time support strong scientific principles and good taxonomic practice
    corecore