165 research outputs found
Online Learning with Ensembles
Supervised online learning with an ensemble of students randomized by the
choice of initial conditions is analyzed. For the case of the perceptron
learning rule, asymptotically the same improvement in the generalization error
of the ensemble compared to the performance of a single student is found as in
Gibbs learning. For more optimized learning rules, however, using an ensemble
yields no improvement. This is explained by showing that for any learning rule
a transform exists, such that a single student using
has the same generalization behaviour as an ensemble of
-students.Comment: 8 pages, 1 figure. Submitted to J.Phys.
A New Stochastic Strategy for the Minority Game
We present a variant of the Minority Game in which players who where
successful in the previous timestep stay with their decision, while the losers
change their decision with a probability . Analytical results for different
regimes of and the number of players are given and connections to
existing models are discussed. It is shown that for the average
loss is of the order of 1 and does not increase with as for
other known strategies.Comment: 4 pages, 3 figure
Synchronization of random walks with reflecting boundaries
Reflecting boundary conditions cause two one-dimensional random walks to
synchronize if a common direction is chosen in each step. The mean
synchronization time and its standard deviation are calculated analytically.
Both quantities are found to increase proportional to the square of the system
size. Additionally, the probability of synchronization in a given step is
analyzed, which converges to a geometric distribution for long synchronization
times. From this asymptotic behavior the number of steps required to
synchronize an ensemble of independent random walk pairs is deduced. Here the
synchronization time increases with the logarithm of the ensemble size. The
results of this model are compared to those observed in neural synchronization.Comment: 10 pages, 7 figures; introduction changed, typos correcte
Untersuchung der Auswirkungen von ökologisch erzeugten Biogasgärresten auf Bodenqualität – Ein Methodeneignungstest
Biogas digestate is a by-product of the biogas process and contains high amounts of nitrogen, which makes it a valuable organic fertiliser. In a field trial near Freising, different crop rotations for biogas production were established in 2004/05 and fertilised with digestate only or were not fertilised (controls). A wide range of methods for soil analysis was used between 2013 and 2015 to identify the methods capable of showing a biogas digestate effect on soil quality. We learned that aggregate stability, C and N contents, and the number of earthworms showed significant differences between fertilised and unfertilised plots, while pH, water infiltration, bulk density and pore size distribution were not able to show biogas effects
Mutual learning in a tree parity machine and its application to cryptography
Mutual learning of a pair of tree parity machines with continuous and
discrete weight vectors is studied analytically. The analysis is based on a
mapping procedure that maps the mutual learning in tree parity machines onto
mutual learning in noisy perceptrons. The stationary solution of the mutual
learning in the case of continuous tree parity machines depends on the learning
rate where a phase transition from partial to full synchronization is observed.
In the discrete case the learning process is based on a finite increment and a
full synchronized state is achieved in a finite number of steps. The
synchronization of discrete parity machines is introduced in order to construct
an ephemeral key-exchange protocol. The dynamic learning of a third tree parity
machine (an attacker) that tries to imitate one of the two machines while the
two still update their weight vectors is also analyzed. In particular, the
synchronization times of the naive attacker and the flipping attacker recently
introduced in [1] are analyzed. All analytical results are found to be in good
agreement with simulation results
Influence of association state and DNA binding on the O2-reactivity of [4Fe-4S] fumarate and nitrate reduction (FNR) regulator
The fumarate and nitrate reduction (FNR) regulator is the master switch for the transition between anaerobic and aerobic respiration in Escherichia coli. Reaction of dimeric [4Fe-4S] FNR with O2 results in conversion of the cluster into a [2Fe-2S] form, via a [3Fe-4S] intermediate, leading to the loss of DNA binding through dissociation of the dimer into monomers. In the present paper, we report studies of two previously identified variants of FNR, D154A and I151A, in which the form of the cluster is decoupled from the association state. In vivo studies of permanently dimeric D154A FNR show that DNA binding does not affect the rate of cluster incorporation into the apoprotein or the rate of O2-mediated cluster loss. In vitro studies show that O2-mediated cluster conversion for D154A and the permanent monomer I151A FNR is the same as in wild-type FNR, but with altered kinetics. Decoupling leads to an increase in the rate of the [3Fe-4S]1+ into [2Fe-2S]2+ conversion step, consistent with the suggestion that this step drives association state changes in the wild-type protein. We have also shown that DNA-bound FNR reacts more rapidly with O2 than FNR free in solution, implying that transcriptionally active FNR is the preferred target for reaction with O2
Recommended from our members
Compositional attribution of non-provenienced Maya polychrome vessels
Procedures and a few of the results of the Maya ceramic project are discussed from the perspective of non-provenienced vessel attribution ranging from site specific through a more inferential level to the rather hypothetical. The examples presented serve to illustrate the manner in which compositional and stylistic covariation are viewed in an investigation of Maya Ceramic art. The large data base from neutron activation analysis including archaeologically recovered pottery as well as the stylistically and iconographically elaborate vessels requires continued refinement in our methods of statistical analysis along with gaining a greater understanding of the sources of ceramic compositional variation in the Maya area. The mutually beneficial collaboration between science, art, and archaeology are emphasized
Species-specific and seasonal differences in the resistance of salt-marsh vegetation to wave impact
The coastal protection function provided by the vegetation of tidal wetlands (e.g. salt marshes) will play an important role in defending coastlines against storm surges in the future and depend on how these systems respond to such forcing. Extreme wave events may induce vegetation failure and thereby risking loss of functionality in coastal protection. However, crucial knowledge on how hydrodynamic forces affect salt-marsh vegetation and whether plant properties might influence plant resistance is missing. In a true-to-scale flume experiment, we exposed two salt-marsh species to extreme hydrodynamic conditions and quantified wave-induced changes in plant frontal area, which was used to estimate plant damage. Moreover, half of the plants were artificially weakened to induce senescence, thus allowing us to examine potential seasonal effects on plant resistance. Morphological, biomechanical as well as biochemical plant properties were assessed to better explain potential differences in wave-induced plant damage. Our results indicate that the plants were more robust than expected, with pioneer species Spartina anglica showing a higher resistance than the high-marsh species Elymus athericus. Furthermore, wave-induced plant damage mostly occurred in the upper part of the vegetation canopy and thus higher canopies (i.e. Elymus athericus) were more vulnerable to damage. Besides a taller canopy, Elymus athericus had weaker stems than Spartina anglica, suggesting that biomechanical properties (flexural stiffness) also played a role in defining plant resistance. Under the highest wave conditions, we also found seasonal differences in the vulnerability to plant damage but only for Elymus athericus. Although we found higher concentrations of a strengthening compound (biogenic silica) in the plant material of the weakened plants, the flexibility of the plant material was not affected indicating that the treatment might not has been applied long enough. Nevertheless, this study yields important implications since we demonstrate a high robustness of the salt-marsh vegetation as well as species-specific and seasonal differences in the vulnerability to plant damage
Biochemical properties of Paracoccus denitrificans FnrP:Reactions with molecular oxygen and nitric oxide
In Paracoccus denitrificans, three CRP/FNR family regulatory proteins, NarR, NnrR and FnrP, control the switch between aerobic and anaerobic (denitrification) respiration. FnrP is a [4Fe-4S] cluster containing homologue of the archetypal O2 sensor FNR from E. coli and accordingly regulates genes encoding aerobic and anaerobic respiratory enzymes in response to O2, and also NO, availability. Here we show that FnrP undergoes O2-driven [4Fe-4S] to [2Fe-2S] cluster conversion that involves up to 2 O2 per cluster, with significant oxidation of released cluster sulfide to sulfane observed at higher O2 concentrations. The rate of the cluster reaction was found to be ~6-fold lower than that of E. coli FNR, suggesting that FnrP can remain transcriptionally active under microaerobic conditions. This is consistent with a role for FnrP in activating expression of the high O2 affinity cytochrome c oxidase under microaerobic conditions. Cluster conversion resulted in dissociation of the transcriptionally active FnrP dimer into monomers. Therefore, along with E. coli FNR, FnrP belongs to the subset of FNR proteins in which cluster type is correlated with association state. Interestingly, two key charged residues, Arg140 and Asp154, that have been shown to play key roles in the monomer-dimer equilibrium in E. coli FNR are not conserved in FnrP, indicating that different protomer interactions are important for this equilibrium. Finally, the FnrP [4Fe-4S] cluster is shown to undergo reaction with multiple NO molecules, resulting in iron nitrosyl species and dissociation into monomers
Innovative Approaches to Optimize Genetic Diversity for Sustainable Farming Systems of the Future (INSUSFAR): Projektübersicht
Increasing yield instability due to climate change could be mitigated by higher interand intra crop diversity. During the course of the INSUSFAR project, several questions
regarding the impact of more diverse crops on agricultural systems are adressed. To answer these questions, varieties, mixtures, and composite cross populations of wheat will be investigated in field experiments and on-farm. Based on the results, the socio-economic, ecological and yield performance of these varieties and the extent of
genetic changes in genetically diverse populations will be tested. In addition, effects of plant breeding on the adaption of varieties to different input levels will be analysed
- …