1,872 research outputs found

    On the radial distribution of Galactic cosmic rays

    Get PDF
    The spectrum and morphology of the diffuse Galactic gamma-ray emission carries valuable information on cosmic ray (CR) propagation. Recent results obtained by analyzing Fermi-LAT data accumulated over seven years of observation show a substantial variation of the CR spectrum as a function of the distance from the Galactic Center. The spatial distribution of the CR density in the outer Galaxy appears to be weakly dependent upon the galactocentric distance, as found in previous studies as well, while the density in the central region of the Galaxy was found to exceed the value measured in the outer Galaxy. At the same time, Fermi-LAT data suggest a gradual spectral softening while moving outward from the center of the Galaxy to its outskirts. These findings represent a challenge for standard calculations of CR propagation based on assuming a uniform diffusion coefficient within the Galactic volume. Here we present a model of non-linear CR propagation in which transport is due to particle scattering and advection off self-generated turbulence. We find that for a realistic distribution of CR sources following the spatial distribution of supernova remnants and the space dependence of the magnetic field on galactocentric distance, both the spatial profile of CR density and the spectral softening can easily be accounted for.Comment: 6 pages, 3 figures. Accepted for publivation to MNRAS letter

    Cosmic ray driven Galactic winds

    Get PDF
    The escape of cosmic rays from the Galaxy leads to a gradient in the cosmic ray pressure that acts as a force on the background plasma, in the direction opposite to the gravitational pull. If this force is large enough to win against gravity, a wind can be launched that removes gas from the Galaxy, thereby regulating several physical processes, including star formation. The dynamics of these cosmic ray driven winds is intrinsically non-linear in that the spectrum of cosmic rays determines the characteristics of the wind (velocity, pressure, magnetic field) and in turn the wind dynamics affects the cosmic ray spectrum. Moreover, the gradient of the cosmic ray distribution function causes excitation of Alfven waves, that in turn determine the scattering properties of cosmic rays, namely their diffusive transport. These effects all feed into each other so that what we see at the Earth is the result of these non-linear effects. Here we investigate the launch and evolution of such winds, and we determine the implications for the spectrum of cosmic rays by solving together the hydrodynamical equations for the wind and the transport equation for cosmic rays under the action of self-generated diffusion and advection with the wind and the self-excited Alfven waves.Comment: 14 pages, 15 figures. Accepted for publication to MNRAS main journa

    A strategy to compute convective timescales of the Indian monsoon with the WRF model

    Full text link
    The Indian monsoon brings around 80% of the annual rainfall over the summer months June--September to the Indian subcontinent. The timing of the monsoon onset and the associated rainfall has a large impact on agriculture, thus impacting the livelihoods of over one billion people. To improve forecasting the monsoon on sub-seasonal timescales, global climate models are in continual development. One of the key issues is the representation of convection, which is typically parametrised. Different convection schemes offer varying degrees of performance, depending on the model and scenario. Here, we propose a method to compute a convective timescale, which could be used as a metric for comparison across different models and convection schemes. The method involves the determination of a vertical convective flux between the lower and upper troposphere through moisture budget analysis, and then relating this to the total column moisture content. The method is applied to a WRF model simulation of the 2016 Indian monsoon, giving convective timescales that are reduced by a factor of 2 when the onset of the monsoon occurs. The convective timescale can also be used as an indicator of monsoon transitions from pre-onset to full phase of the monsoon, and to assess changes in monsoon phases under future climate scenarios.Comment: 21 pages, 9 Figures plus 10 Supplementary Figure

    Ultrafast Electrochemical Self-Doping of Anodic Titanium Dioxide Nanotubes for Enhanced Electroanalytical and Photocatalytic Performance

    Get PDF
    This study explores an ultrarapid electrochemical self-doping procedure applied to anodic titanium dioxide (TiO2) nanotube arrays in an alkaline solution to boost their performance for electroanalytical and photocatalytic applications. The electrochemical self-doping process (i.e., the creation of surface Ti3+ states by applying a negative potential) is recently emerging as a simpler and cleaner way to improve the electronic properties of TiO2 compared to traditional chemical and high-temperature doping strategies. Here, self-doping was carried out through varying voltages and treatment times to identify the most performing materials without compromising their structural stability. Interestingly, cyclic voltammetry characterization revealed that undoped TiO2 shows negligible activity, whereas all self-doped materials demonstrate their suitability as electrode materials: an outstandingly short 10 s self-doping treatment leads to the highest electrochemical activity. The electrochemical detection of hydrogen peroxide was assessed as well, demonstrating a good sensitivity and a linear detection range of 3–200 µM. Additionally, the self-doped TiO2 nanotubes exhibited an enhanced photocatalytic activity compared to the untreated substrate: the degradation potential of methylene blue under UV light exposure increased by 25% in comparison to undoped materials. Overall, this study highlights the potential of ultrafast electrochemical self-doping to unleash and improve TiO2 nanotubes performances for electroanalytical and photocatalytic applications

    Spin Echo Decay in a Stochastic Field Environment

    Full text link
    We derive a general formalism with which it is possible to obtain the time dependence of the echo size for a spin in a stochastic field environment. Our model is based on ``strong collisions''. We examine in detail three cases where: (I) the local field is Ising-like, (II) the field distribution is continuous and has a finite second moment, and (III) the distribution is Lorentzian. The first two cases show a T2 minimum effect and are exponential in time cubed for short times. The last case can be approximated by a phenomenological stretched exponential.Comment: 11 pages + 3 postscript figure

    Dependence of the energy resolution of a scintillating crystal on the readout integration time

    Get PDF
    The possibilty of performing high-rate calorimetry with a slow scintillating crystal is studied. In this experimental situation, to avoid pulse pile-up, it can be necessary to base the energy measurement on only a fraction of the emitted light, thus spoiling the energy resolution. This effect was experimentally studied with a BGO crystal and a photomultiplier followed by an integrator, by measuring the maximum amplitude of the signals. The experimental data show that the energy resolution is exclusively due to the statistical fluctuations of the number of photoelectrons contributing to the maximum amplitude. When such number is small its fluctuations are even smaller than those predicted by Poisson statistics. These results were confirmed by a Monte Carlo simulation which allows to estimate, in a general case, the energy resolution, given the total number of photoelectrons, the scintillation time and the integration time

    Relative influence of the adeno-associated virus (AAV) type 2 p5 element for recombinant AAV vector site-specific integration.

    Get PDF
    The p5 promoter region of the adeno-associated virus type 2 (AAV-2) rep gene has been described as essential for Rep-mediated site-specific integration (RMSSI) of plasmid sequences in human chromosome 19. We report here that insertion of a full-length or minimal p5 element between the viral inverted terminal repeats does not significantly increase RMSSI of a recombinant AAV (rAAV) vector after infection of growth-arrested or proliferating human cells. This result suggests that the p5 element may not improve RMSSI of rAAV vectors in vivo
    • …
    corecore