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ABSTRACT

The escape of cosmic rays from the Galaxy leads to a gradient in the cosmic ray
pressure that acts as a force on the background plasma, in the direction opposite to
the gravitational pull. If this force is large enough to win against gravity, a wind can
be launched that removes gas from the Galaxy, thereby regulating several physical
processes, including star formation. The dynamics of these cosmic ray driven winds is
intrinsically non-linear in that the spectrum of cosmic rays determines the character-
istics of the wind (velocity, pressure, magnetic field) and in turn the wind dynamics
affects the cosmic ray spectrum. Moreover, the gradient of the cosmic ray distribution
function causes excitation of Alfvén waves, that in turn determine the scattering prop-
erties of cosmic rays, namely their diffusive transport. These effects all feed into each
other so that what we see at the Earth is the result of these non-linear effects. Here we
investigate the launch and evolution of such winds, and we determine the implications
for the spectrum of cosmic rays by solving together the hydrodynamical equations for
the wind and the transport equation for cosmic rays under the action of self-generated
diffusion and advection with the wind and the self-excited Alfvén waves.

Key words: keyword1 – keyword2 – keyword3

1 INTRODUCTION

The possibility of a galaxy to launch winds has attracted
attention for many different reasons. For instance, star for-
mation is regulated by the amount of gas available, and
winds affect the availability of such gas. In fact, galactic
models that do not include feedback processes suffer from
overpredicting the amount of baryons and star formation
rates (Crain et al. 2007; Stinson et al. 2013). Winds also pol-
lute Galactic halos with hot dilute plasma that may pro-
vide an important contribution to the number of baryons in
the Universe(Kalberla et al. 1998; Kalberla & Dedes 2008;
Miller & Bregman 2013). Such gas might in fact have al-
ready been detected (Snowden et al. 1995) in the form
of a X-ray emitting plasma with temperature of several
million degrees, and possibly associated with a Galactic
wind by Breitschwerdt & Schmutzler (1994, 1999) (see also
Everett et al. 2008). Finally winds can affect the transport
of cosmic rays (CRs) in a galaxy, by advecting them away
from their sources.

Galactic winds may be thermally-driven, namely pow-
ered by core-collapse SNe (see e.g. Chevalier & Clegg
1985) or momentum-driven, powered by starburst radia-

⋆ E-mail: sarah.recchia@gssi.infn.it
† E-mail: blasi@arcetri.astro.it
‡ E-mail: giovanni.morlino@gssi.infn.it

tion (Scoville 2003; Murray et al. 2005). These two mech-
anisms of wind launching are thought to be at work in
starburst galaxies and galaxies with active nuclei (see, e.g.,
Veilleux et al. 2005, for a comprehensive review). On the
other hand in a galaxy like the Milky Way, winds are unlikely
to be due to such processes because thermal and radiation
pressure gradients are expected to be too small. A possible
exception is the innermost part of the Galactic Center region
where the recent discovered Fermi Bubbles may have their
origin through direct bursts from Sgr A∗ (Cheng et al. 2011;
Zubovas et al. 2011) or because of past starburst activities
(Lacki 2014). On the other hand, CRs can play an impor-
tant role in launching winds because of the gradient that
their pressure develops as a consequence of the gradual es-
cape of CRs from the Galaxy. The force −∇PCR associated
with such gradient is directed opposite to the gravitational
force, and in certain conditions the plasma above and be-
low the disc can be lifted off to form a CR driven wind.
Notice that the gravitational force may be dominated by
the dark matter component or the baryonic (gas and stars)
components depending on the location. The force exerted
by CRs depends in a complicated manner on the density of
sources of CRs but also on non-linear processes of excitation
of Alfvén waves through streaming instability. Both the force
induced by CRs on the background plasma and the stream-
ing instability induced by CRs depend on the gradient in
CR density. In turn the distribution function of CRs is af-
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fected by their transport: diffusion is self-regulated through
the production of Alfvén waves, and advection is determined
by the velocity of the wind, if any is launched, and by the
Alfvén waves’ velocity, directed away from the sources of
CRs. This complex interplay makes the problem non-linear
and in fact the full problem of calculating at the same time
the properties of the wind and the spectrum of CRs as a
function of the location in the Galaxy has never been solved
before. The first pioneering attempt to describe the hydro-
dynamics of a CR driven wind was described in a paper
by Ipavich (1975), where the author used a spherically sym-
metric model of the Galaxy and considered only baryons and
stars for the calculation of the gravitational potential. Later
Breitschwerdt et al. (1991) presented an extensive discus-
sion of the hydrodynamics of CR driven winds: dark matter
was included and a realistic geometry of the wind was con-
sidered, in which the launch takes place at some distance
from the Galactic disc and proceeds in a roughly cylindrical
symmetry out to a distance of about ∼ 15 kpc, where the
flow opens up into a spherical shape. Such a geometry be-
came a milestone for future calculations of CR driven winds
and is adopted also in our paper, as discussed below. The
calculations of Breitschwerdt et al. (1991) treated CRs as
a fluid, hence no information on the spectrum of CRs was
retained. The important role of wave damping in the wind
region was also discussed by Breitschwerdt et al. (1991), al-
though only in the simplified case of a spherical outflow. As
mentioned above, Breitschwerdt et al. (1991) assumed that
the wind is launched some distance away from the disc of
the Galaxy and this assumption raises the issue of what hap-
pens in the region between the disc and the base of the wind,
a problem of both mathematical and physical importance,
that was discussed by Breitschwerdt et al. (1993) and that
will be central to our paper as well.

The paper by Breitschwerdt et al. (1991) represented a
milestone in the investigation of CR driven winds and their
calculation was adopted in much of the future literature in
the field, including the recent work by Everett et al. (2008)
that used the model of a CR driven wind (including damp-
ing) to explain the observed Galactic soft X-ray emission.

The dynamical role of CRs in launching the winds
was also studied via purely hydrodynamical simulations
(Uhlig et al. 2012; Booth et al. 2013; Salem & Bryan 2014)
and through MHD simulations (Girichidis et al. 2016;
Peters et al. 2015; Ruszkowski et al. 2016). These simula-
tions, with their progressive level of sophistication, demon-
strated that CRs play an important role in wind launching.
Nevertheless, all this bulk of work treated CRs as a fluid,
thereby not providing any information on the CR spectrum.

The first calculation of the spectrum of CRs in a Galaxy
with a CR driven wind was made by Ptuskin et al. (1997),
where the rotation of the Galaxy over cosmological time
scales was also taken into account (Zirakashvili et al. 1996).
The authors used a simplified approach to the character-
istics of the wind (for instance the assumption that the
advection velocity for small heights above the disc scales
linearly with distance from the disc) to infer some general
implications for the spectrum of CRs. To our knowledge,
the paper by Ptuskin et al. (1997) represents the only at-
tempt to account for both a CR driven wind and its effects
of the transport of CRs. Much work has been done in later
years on treating the wind in a more realistic way, includ-

ing the recent time dependent approach to the wind evo-
lution (Dorfi & Breitschwerdt 2012) and numerical simula-
tions of the wind dynamics (Uhlig et al. 2012) and chemical
evolution (Girichidis et al. 2016), but none of these efforts
included the kinetic description of CRs.

In this paper we present the first semi-analytical calcu-
lation of the hydrodynamics of a CR driven wind, including
the self-generation of Alfvén waves through streaming insta-
bility and their damping through non-linear Landau damp-
ing, and the calculation of the diffusive-convective transport
of CRs in such wind. Throughout the paper, we assume that
the general topology of the magnetic field lines is such that
the transport of the wind and of CRs occurs along the field
lines (parallel geometry).

At present, for the sake of simplicity, we decided to
leave rotation out of this calculations, but its introduction is
straightforward from the technical point of view. The spec-
trum of CRs at the position of the Earth is calculated for
several cases of interest, so as to emphasise that several of
the cases that are considered feasible from the point of view
of hydrodynamics actually lead to spectra that are not con-
sistent with observations. Special attention is devoted to the
discussion of the role of the near disc region, where waves
cannot be produced because of ion-neutral damping, and
CR scattering, if any is present, is most likely guaranteed
by some sort of turbulence directly injected by the same
sources of CRs, for instance supernova explosions.

We find that the spectrum of CRs observed at the Earth
in the low energy regime (E . 1 TeV) is mainly affected
by the wind launching and evolution, because of the inter-
play between advection with the wind (and Alfvén waves)
and self-generated diffusion. In general, at E . 10 GeV
advection is dominant, while a relatively steep spectrum is
found at higher energies. For E & 1 TeV the CR transport
is dominated by what happens in the near-disc region. In
general this situation may lead to a spectral change in the
TeV range, that under some conditions, may resemble the
hardening observed by PAMELA (Adriani et al. 2011) and
AMS-02 (Aguilar et al. 2015), at least qualitatively.

The paper is organised as follows: in §2 we describe
the basic formalism and the mathematical methods used to
compute the structure of the wind in the presence of self-
generated waves. The details of how to solve the hydrody-
namical equations and the CR transport equation are pro-
vided in §3 and §4 respectively. Our results are discussed in
§5, for our reference model (§5.1) and for an alternative sce-
nario devised to illustrate the importance of the near-disc
region (§5.2). We draw our conclusions in §6.

2 A SEMI-ANALYTICAL APPROACH TO

CR-DRIVEN WINDS

The dynamics of winds in the presence of CRs is described
by the equations of conservation of mass, momentum and
energy for the wind itself and by the transport equation for
CRs. The two are coupled to each other in three ways: 1) the
gradient of the CR pressure acts as a force on the plasma; 2)
Alfvén waves excited by CR streaming are quickly damped
through non-linear Landau damping (NLLD), thereby re-
sulting in heating of the plasma in the wind; 3) the diffusion
term in the CR transport equation leads to an effective con-
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tribution to the enthalpy. In the assumption that damping
occurs on time scales much shorter than any other process,
definitely justified for NLLD, one can write the equations
of hydrodynamics of the wind (see Appendix A for their
derivation) as:

~∇ · (ρ~u) = 0, (1)

ρ(~u · ~∇)~u = −~∇(Pg + Pc)− ρ~∇Φ, (2)

~u · ~∇Pg =
γgPg

ρ
~u · ~∇ρ− (γg − 1) ~vA · ~∇Pc, (3)

~∇ ·

[

ρ~u

(

u2

2
+

γg
γg − 1

Pg

ρ
+ Φ

)]

= −(~u+ ~vA) · ~∇Pc, (4)

~∇ ·

[

(~u+ ~vA)
γcPc

γc − 1
−

D~∇Pc

γc − 1

]

= (~u+ ~vA) · ~∇Pc, (5)

~∇ · ~B = 0, (6)

where ρ(z), ~u(z) and Pg(z) are the gas density, velocity and
pressure and ~B is the magnetic field in the wind, while Pc(z)
is the CR pressure and γc is the adiabatic index of the CR
gas. Notice that γc(z) is actually calculated locally (as a
function of z) from the distribution function f(p, z) that
solves the CR transport equation.

We introduced the Alfvén velocity ~vA(z), while Φ(R0, z)
is the gravitational potential of the Galaxy (see Sec. 2.1).
The fact that the wave pressure does not appear in the equa-
tions reflects the assumption of fast damping, which results
in small wave pressure compared to the gas and CR pres-
sures.
The transport of CRs is described by the advection-diffusion
equation:

~∇·
[

D~∇f
]

− (~u+~vA) · ~∇f+ ~∇·(~u+~vA)
1

3

∂f

∂ ln p
+Q = 0, (7)

where f(~r, p) and D(~r, p) are the CR distribution function
and diffusion coefficient as functions of position ~r and mo-
mentum p. The term Q represents injection of CRs in the
Galaxy, that we assume to be limited to the Galactic disc.
The average diffusion coefficient that appears in equation 5
is defined as:

D(~r) =

∫

∞

0
dp p2T (p)D(~r, p)∇f
∫

∞

0
dp p2T (p)∇f

, (8)

and T (p) is the kinetic energy of particles with momentum
p.

In the following we adopt the same geometry of the wind
flow as initially introduced by Breitschwerdt et al. (1991),
and used by many authors afterwards. The assumption is
that the wind is launched from a surface at distance z0 above
(and below) the disc, and that it retains a roughly cylindrical
geometry out to a distance Zs of the order of the radius of
the disc. At larger distances the flow opens into a spherical
shape. The surface of the wind is then assumed to be in the
form:

A(z) = A0

[

1 +

(

z

Zs

)2
]

, (9)

which is only function of one spatial coordinate, z. This
makes the problem effectively one-dimensional as long as
all quantities are assumed to depend only on z. This simpli-
fies the conservation equations that can be easily shown to

Figure 1. Flux-tube geometry for the magnetic field.

lead to the following expressions (see Appendix B):

ρuA = const, (10)

AB = const, (11)

du

dz
= u

c2∗
1

A
dA
dz

− dΦ
dz

u2 − c2∗
, (12)

dPg

dz
= γg

Pg

ρ

dρ

dz
− (γg − 1)

vA
u

dPc

dz
(13)

dPc

dz
=

γcPc

ρ

2u+ vA
2(u+ vA −D)

dρ

dz
, (14)

c2∗ = γg
Pg

ρ
+ γc

Pc

ρ

[

1− (γg − 1)
vA
u

] 2u+ vA
2(u+ vA −D)

, (15)

D =
d
dz

(

AD dPc

dz

)

A dPc

dz

. (16)

One can easily recognise the generalised sound speed c∗ in-
troduced by Breitschwerdt et al. (1991), where however two
important differences appear: first, the non-adiabatic heat-
ing induced by wave damping, which has important impli-
cations for the wind launching. Second, the effective veloc-
ity term D which accounts for the finite diffusivity of CRs.
In the calculations of Breitschwerdt et al. (1991), it was as-
sumed that D = 0, although one can check a posteriori that
in general this assumption is not justified, in that there are
locations where such term is at least comparable with all
others, so that neglecting it leads to an incorrect solution of
the problem.

The transport equation of CRs also gets simplified with
the flux geometry assumed above:

∂

∂z

[

A(z)D(z, p)
∂f(z, p)

∂z

]

−

[

A(z)U(z)
∂f(z, p)

∂z

]

(17)

+
d[A(z)U(z)]

dz

1

3

∂f(z, p)

∂ ln p
+ A(z)Q(z, p) = 0,

where we introduced the advection velocity U(z) = u(z) +
vA(z). In general the diffusion coefficient D(z, p) is assumed
to be determined by the process of self-generation of Alfvén
waves excited by CRs through streaming instability, al-
though we will consider situations in which we relax this
assumption. Since the self-generated perturbations in the
magnetic field are relatively weak, one can still use quasi-
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linear theory to write the diffusion coefficient as:

D(z, p) =
1

3

v(p)rL(z, p)

F

∣

∣

∣

∣

kres=1/rL

, (18)

where F is the normalized energy density per unit logarith-
mic wavenumber k, calculated at the resonant wavenumber
kres = 1/rL(p). The local value of F is determined by the
balance between the CR-driven growth of Alfvén waves and
their damping. In the region where the background gas is
totally ionized, waves are damped through NLLD at a rate
(Ptuskin & Zirakashvili 2003):

ΓD = (2ck)
−3/2kvAF

1/2. (19)

On the other hand the growth occurs at a rate that is given
by Skilling (1971):

ΓCR =
16π2

3

vA
FB2

[

p4v(p)

∣

∣

∣

∣

∂f

∂z

∣

∣

∣

∣

]

p=pres

. (20)

Equating ΓD = ΓCR and using equation (18) one obtains:

F(z, p) = 2ck

[

p4v(p)
∣

∣

∂f
∂z

∣

∣

16π2

3
rL(z, p)

B2(z)

]2/3

. (21)

In §3 and §4 we will describe the method adopted to
solve the hydrodynamical equations and the transport equa-
tion respectively. Here we describe the way the two pieces
are linked together in an iterative procedure. We initiate
our computational procedure by solving the equation for the
wind structure, by assuming that all quantities are known at
the base of the wind, and by requiring that D = 0. This first
step allows us to derive a guess for the launching velocity of
the wind u0 and the wind properties (velocity, pressure of the
gas, CRs and waves). At this point this guess is used as an
input for the quantities entering the transport equation (17):
most important, the wind velocity u(z) and the Alfvén speed
vA(z) = B(z)/

√

4πρ(z) are calculated from the output of
the hydrodynamical part of the calculation. The solution of
equation (17) leads to the spectrum of CRs as a function
of location z and momentum p, f(z, p), and to knowing the
diffusion coefficient D(z, p) as due to self-generated Alfvén
waves. Notice that in general the CR pressure obtained by
integrating the distribution function f(z, p) (and especially
the CR pressure at the base of the wind) is different from
the one assumed in order to determine the wind structure.
This leads to the second iteration: the updated CR pres-
sure at the base is used to compute the structure of the
wind and the whole calculation is repeated. Moreover, the
diffusion coefficient and the distribution function are used
to compute γ(z) and D. Notice that the latter quantity is
no longer bound to vanish, as assumed in previous calcula-
tions by Breitschwerdt et al. (1991). This iterative scheme
continues until the spectrum of CRs reaches convergence at
all distances and at all momenta. As a consequence the CR
pressure at the base converges to the actual solution, so it
does the whole structure of the CR induced wind. Clearly,
if the goal is to apply this calculation to the case of our own
Galaxy at the location of the Sun, R⊙, then the CR injection
is modified so as to reach a solution where the CR pressure
is the same as observed. It is very important to stress that
this condition alone is not sufficient to guarantee that the
CR spectrum observed at the Earth is also consistent with
observations: in fact, a generic wind solution leads to spectra

of CRs at the Earth location that are quite different from
the observed ones, mainly as a result of the strong advection
with the wind, that corresponds to exceedingly hard spectra
at low energy. We will discuss the qualitative comparison
between the wind solutions and the observed CR spectra in
§5.

Since the properties of the wind depend in a rather sen-
sible way upon the properties of the gravitational potential,
in §2.1 we describe in detail our assumptions on the con-
tribution of disc and bulge content and dark matter to the
gravitational potential.

2.1 Galactic gravitational potential

The gravitational potential of the bulge-disk component is
modelled following (Miyamoto & Nagai 1975):

ΦB,D(R0, z) = −
2
∑

i=1

GMi
√

R2
0 +

(

ai +
√

z2 + b2i

)2
, (22)

where z and R0 are the distance from the galactic
disk and the galactocentric distance respectively. Follow-
ing (Breitschwerdt et al. 1991), we assumed for the bulge
(M1, a1, b1) =(2.05 × 1010M⊙, 0.0 kpc, 0.495 kpc) and
(M2, a2, b2) =(2.547 × 1011M⊙, 7.258 kpc, 0.520 kpc) for
the disk.

Dark matter distribution is assumed to be well
described by a Navarro-Frenk-White (NFW) profile
(Navarro et al. 1996):

ρDM =
ρ0

x(1 + x)2
, (23)

where x = r/rc and rc is the radius of the core of the dis-
tribution. The two quantities ρ0 and rc are calculated by
requiring that the total mass of the halo is Mvir = 1012M⊙

(Nesti & Salucci 2013) and the energy density of dark mat-
ter at the position of the Sun is 0.3 GeV cm−3. The dark
matter halo is assumed to extend out to a maximum distance
that equals the viral radius rvir ≈ 300 kpc.

The Dark Matter halo potential corresponding to this
spatial distribution reads:

Φ(x) =− 4πGρsr
2
s

[

ln(1 + x)

x
−

ln(1 + xvir)

xvir

]

− (24)

−
GMvir

rs

1

xvir

(r ≤ rvir)

Φ(x) =−
GMvir

rs

1

x
. (r > rvir)

A plot of the acceleration associated with the different con-
tributions to the Galactic gravitational potential at the posi-
tion of the Sun R⊙ = 8.5 kpc is shown in Fig. 2 as a function
of the height z from the disc. One can see that at R⊙ the
potential is dominated by the disc component out to a dis-
tance z ∼ 10 kpc, while at larger distances the dark matter
contribution becomes more important.
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Figure 2. Gravitational acceleration as due to the three compo-
nents: the Bulge, the Disk and the Dark Matter Halo. All curves
are computed at the Sun’s position (R⊙ = 8.5 kpc).
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Figure 3. Topology of the solutions of the hydrodynamics equa-
tions: z0 indicates the base of the wind, while zc is the critical
point, where u(zc) = c∗(zc). The (red) solid line represents a wind
solution, that starts as subsonic and becomes supersonic at the
critical point. The branches of the solutions that are unphysical
are labelled as such.

3 IDENTIFICATION OF THE WIND

SOLUTION

Here we discuss the procedure adopted for the determination
of the wind solution for a given set of conditions at the
base of the wind. We recall that, as discussed above, this
calculation is embedded in an iterative computation that is
repeated until convergence of the overall structure of the
wind and of the CR spectrum is achieved.

We look for a wind solution of equations (10)-(16),
namely a solution for the flow velocity u(z) that shows a
transition from subsonic (u < c∗) to supersonic (u > c∗) mo-
tion, where c∗(z) is the compound sound speed as a function
of z.

The topology of the solutions (see also
Breitschwerdt et al. 1991)) of equation (10)-(16) depends
on the nature of the critical points of the wind equation
(12), namely the points in which the velocity derivative has
zero numerator (c2∗ = dΦ

dz
/ 1

A
dA
dz

) and/or zero denominator
(u2 = c2∗), and is schematically represented in Fig. 3. The

point for which both numerator and denominator are zero is
the critical (sonic) point and it corresponds to the location
where the flow velocity equals the compound sound speed,
u = c∗. As shown in Fig. 3, there are two curves passing
through the critical point. The one corresponding to a
subsonic flow at z0 is the one relevant for our problem.
The other one corresponds to an accretion (infall) solution.
The curves in the lower branch of solutions shown in Fig.
3 correspond to flows that remain subsonic, the so called
“breezes”. The upper branch corresponds to supersonic flow
and is physically irrelevant. For both families of curves,
there is a point where the numerator of equation (12)
vanishes. The other two branches are unphysical and for
both there is a point where the denominator of equation
(12) vanishes.

For given values of the magnetic field B0, gas density ρ0,
gas pressure Pg0 and CR pressure Pc0 at z = z0, we compute
the velocity at the base of the wind u0 that corresponds to
the wind solution, namely the value of u0 for which the flow
starts as subsonic and then smoothly becomes supersonic at
the critical point zc (see Fig. 3). Both the location of the
sonic point and the launching velocity u0 are outputs of the
calculation. For each iteration, Pc0 and D(z) in equation
(16) are computed based on the solution of the transport
equation in the previous iteration.

From the technical point of view, we start the search
for the wind solution by bracketing the range of values of
u0 that may potentially correspond to a wind solution. In
order to do so, we impose three conditions: 1) the flow starts
as subsonic (c∗0 > u0); 2) u(z) is a growing function of z at
z0, namely du

dz
|z0 > 0; 3) the solution leads to a final wind

velocity at infinity that is physical, namely u2
f > 0.

This last point corresponds to imposing energy conser-
vation between z = z0 and infinity and requiring that at
z = ∞ all fluxes vanish with the exception of the kinetic
flux associated to the wind bulk motion. This condition se-
lects the solutions that correspond to u2

f > 0.
Once a closed interval for u0, say [u0,min, u0,max], has

been determined, we numerically integrate the hydrody-
namic equations starting at z0 and for values of u0 in this
range, stepped by ∆u0. In this way we sample the topology
of the solutions and we can identify the transition between
the last breeze and the first unphysical solution by gradually
increasing the value of u0. This procedure can be repeated
to narrow down the region where the actual wind solution
is located.

The procedure of identification of the wind solution also
returns the location of the critical point z = zc. We can then
compute both the flow speed and its derivative at the sonic
point:

u2
c = c2∗c =

dΦ

dz

/

1

A

dA

dz
, (25)

(

du

dz

)

zc

=
uc

2

(

1

A

dA

dz

)

zc

(26)

+

√

√

√

√

(

−
u2
c

4

(

1

A

dA

dz

)2

+
u2
c

2

1

A

d2A

dz2
−

1

2

d2Φ

dz2

)

zc

.

The last expression has been obtained by Taylor expanding
equation (12) around the critical point. In addition, using
the conservation relations (10), equations (11) and (B12)
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Figure 4. Schematic picture of the solution method for the hy-
drodynamic equations: the wind curve lies between a breeze, ob-
tained by integrating with u0 = u0B , and an unphysical solution,
obtained by integrating with u0 = u0U , where u0B < u0U . The
location of the sonic point zc can be estimated as the location
of the maximum of the breeze. The small box shows a zoomed

region around the sonic point.

and the fact that at the sonic point uc = c∗(zc), we can
compute the values of all physical quantities (ρ, B, Pg , Pc)
at the sonic point. The wind solution is finally found by
integrating the hydrodynamic equations starting at the sonic
point toward z = z0 and toward z → ∞. The hydrodynamic
part of our calculation has been checked versus the results
of Breitschwerdt et al. (1991) for the cases considered there
and for the same set of parameters.

4 KINETIC CALCULATION

The stationary CR transport equation is as reported in equa-
tion (17). Injection of CRs is assumed to take place only in
an infinitely thin Galactic disc of radius Rd, so that the in-
jection term is written as Q(z, p) = Q0(p)δ(z), where

Q0(p) =
NSN(p)RSN

πR2
d

, (27)

and NSN(p) is the spectrum contributed by an individual
source occurring with a rate RSN . We have in mind su-
pernova remnants (SNRs) as the sources of Galactic CRs,
although the calculations presented here do not depend cru-
cially on such an assumption. The spectrum of each SNR
can be written as:

NSN(p) =
ξCRESN

I(γ)c(mc)4

( p

mc

)−γ

, (28)

where ξCR is the CR injection efficiency (typically ∼ 10%),
ESN is the energy released by a supernova explosion (∼
1051erg), RSN is the rate of SN explosions (∼ 1/30 yr−1),
and I(γ) is a normalization factor chosen in such a way that
∫

∞

0

NSNT (p)d3p = ξCRESN , (29)

where T (p) is the kinetic energy of a particle of momentum
p.

Equation (17) can be recast in a simpler form by noting
that

UA
∂f

∂z
=

∂(AUf)

∂z
− f

d(AU)

dz
, (30)

so that equation (17) becomes

∂

∂z

[

AD
∂f

∂z
− UAf

]

+
d[AU ]

dz

[

f +
p

3

∂f

∂p

]

+AQ0(p)δ(z) = 0.

(31)

In addition,

1

3

1

p3
∂(fp3)

∂ ln p
=

f

3

∂ ln(fp3)

∂ ln p
=

1

3

∂f

∂ ln p
+ f (32)

so that we can finally rewrite equation (17) as

∂

∂z

[

AD
∂f

∂z
− UAf

]

−
d[AU ]

dz

f

3
q + AQ0(p)δ(z) = 0, (33)

where we introduced the slope:

q(z, p) = −
∂ ln(fp3)

∂ ln p
. (34)

We look for an implicit solution of the transport equation
(33) that satisfies the boundary conditions f(0, p) = f0(p) at
the disk and f(p,H) = 0 at some outer boundary H . Note
that here H is set just for numerical purposes, and can be
also located at spatial infinity. In other words the transport
equation in the presence of a wind does not require the exis-
tence of a predefined physical halo of given size, in contrast
with the standard calculations of CR transport, where such
quantity plays a crucial role.

The equation for f0(p) can be obtained by integrating
equation (33) around the disk, namely between z = 0− and
z = 0+, and using the fact that the problem is symmetric
around the disk so that:

U(0+) = −U(0−) = U0

dU

dz

∣

∣

∣

∣

0

= 2U0δ(z)

f(0+) = f(0−) = f0(p)

dU

dz

∣

∣

∣

∣

0+

= −
dU

dz

∣

∣

∣

∣

0−

.

Integration around the disc leads to:

2A0D0

dU

dz

∣

∣

∣

∣

0+

− 2A0U0

f0
3
q̃0 + A0Q0(p) = 0, (35)

where we used equations (34) and (32) and we introduced

q̃0(p) = −
∂ ln f0(p)

∂ ln p
. (36)

Integrating equation (33) between z = 0+ and a generic
height z one gets the equation:

∂f

∂z
(z, p) =

U(z)

D(z, p)
f(z, p) (37)

+
G(z, p)

A(z)D(z, p)
−

A0Q0(p)

2A(z)D(z, p)
−

U0A0f0(p)q0(p)

A(z)D(z, p)
,

where

G(z, p) =

∫ z

0

dz
d(AU)

dz

f

3
q (38)

q0(p) = 1−
q̃0
3
. (39)
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Integration of this equation between z and H with the
boundary condition f(H, p) = 0 leads to the following im-
plicit solution for f(z, p):

f(z, p) =

∫

z

H dz′

A(z′)D(z′, p)
G(z′, p) exp

−
∫
z
z′dz′′

U(z′′)

D(z′′,p) ,

(40)

where

G(z, p) =
A0Q0(p)

2
+ A0U0f0(p)q̄0 − G(z, p). (41)

This rewriting of the transport equations hides the non-
linearity of the problem in the function G(z, p), which de-
pends on f(z, p) and on the CR diffusion coefficient D(z, p)
(see equation 18). The solution of equation (40) is computed
with an iterative procedure.

The procedure reaches convergence when, for a given
iteration j, f j(z, p) and f j−1(z, p) are close to each other
within a desired precision. Note that the advection velocity
U(z) is computed from the hydrodynamic equations and is
fixed while iterating upon the distribution function f j .

5 RESULTS

In this section we illustrate some selected cases of CR in-
duced winds, aimed at addressing different issues that arise
in this type of problem. The first case is what we will re-
fer to as our reference case, namely a case that illustrates
the most basic characteristics of a CR induced wind, with
a minimal number of physical parameters introduced. The
wind is launched very close to the disc of the Galaxy, and
we consider the specific situation expected at the solar ra-
dius, namely at the Galactocentric distance R = R⊙ = 8.5
kpc, where the Sun is located. This information is crucial in
that it determines the gravitational potential that the wind
has to fight against. The second model considered below is
that in which a wind is launched at some distance from the
Galactic disc, while particle transport in the near-disc region
is assigned. This latter situation is physically motivated by
the fact that ion-neutral damping is expected to damp self-
generated Alfvenic turbulence within ∼ 0.5 − 1 kpc from
the disc, because of the presence of a substantial amount
of neutral hydrogen. We will show that the consequences of
this setup for the spectrum of CRs observed at the Earth
are very prominent.

5.1 Reference case

Our reference case corresponds to launching a CR-induced
wind at a Galactocentric distance R = R⊙ = 8.5 kpc. The
base of the wind is assumed to be at the edge of the Galactic
disc, z0 = 100 pc, where we assumed that the ionized gas
has a density n0 = 0.003 cm−3 and the magnetic field is
B0 = 1.5µG (to be interpreted as the component of the field
along the z direction). The CR pressure at z0 is taken to
equal the observed CR pressure, Pc0 = 6 × 10−13 erg/cm3.
We solve simultaneously the hydrodynamical equations for
the wind and the transport equation for CRs, with self-
generated diffusion and advection taken into account. In or-
der to get the desired CR pressure at the Sun’s location (see
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Figure 5. Density (red solid line) in units of 10−3 cm−3 and
temperature (greed dashed line) in units of 106 K for the wind
solution in the reference case.
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Figure 6. Wind velocity (red solid line), Alfvén velocity (green
dashed line) and sound speed (blue dotted line) as a function of
the height z above the disc, for the reference case.

above) we are bound to take

ξCR

0.1

RSN

1/30 yr−1
≈ 1.8,

for an injection spectrum with slope γ = 4.3. The density
of plasma in the wind and the temperature of the wind are
shown in Fig. 5. The temperature of the wind is maintained
by the continuous damping of wave energy into thermal en-
ergy of the gas. In Fig. 6 we show the wind velocity u(z)
(green dashed line), the Alfvén speed vA(z) (blue dotted
line) and the sound speed c∗(z) as functions of the distance
from the Galactic disc. The wind is launched with a speed
of 41 km s−1 and asymptotically reaches a speed of 353 km
s−1, while it becomes supersonic at ∼ 15 kpc.

For the sake of future discussion it is important to notice
here that the CR advection velocity at the base of the wind
is dominated by the Alfvén speed and that the latter is non
zero at the base of the wind (because of a finite density and
magnetic field).

The pressure of CRs as a function of the distance z from
the disc is shown in Fig. 7, together with the gas pressure
and the CR pressure as derived from the kinetic calculation:

MNRAS 000, 1–14 (2016)
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Figure 7. CR pressure (red solid line) and gas pressure (blue
dotted line) in the reference case. The green dashed line shows
the CR pressure as obtained from the solution of the transport
equation. The same calculation also returns the wave pressure
Pw(z) (pink dotted line) that is assumed to vanish in the hydro-
dynamical equation.

the fact that the latter is basically overlapped to Pc(z)
as derived from hydrodynamics shows that the system of
equations (hydro plus kinetic) reached convergence (with
accuracy of ∼ 0.1% at heights z close to the base of the
wind and ∼ 10−20% at z close to the outer edge of the box
used for numerical computation; here all quantities, with
the exception of the wind velocity, are bound to vanish).

The gas temperature obtained for z . 10 kpc (see
Fig. 5) suggests that cooling may be important. At such
temperature the gas is cooled by the emission of forbidden
lines and soft X-rays (Dalgarno & McCray 1972) but, on
the other hand, it is also heated by SN explosions through
the injection of hot gas and magnetic turbulence that will
eventually decay into thermal energy. Recently it was sug-
gested that also Coulomb losses of CRs themselves might be
a substantial source of heating (Walker 2016). The relevance
of cooling was already recognized by Breitschwerdt et al.
(1991) which, nevertheless, assumed that energy balance
exist between heating and cooling processes. Which process
dominates the heating is at the moment unclear but ob-
servations reveals that the temperature in the halo reaches
∼ 105 − 106 K (see, e.g., Miller & Bregman 2013), hence
supporting the idea that either the cooling is negligible or it
is balanced by heating processes. In this paper we decided
to neglect the role of cooling, deferring a more complete
study in a future work.

The spectrum of CRs as a function of particle momen-
tum is reported in Fig. 8 for several distances from the
Galactic plane. The most striking feature of the spectrum at
the disc is the pronounced spectral hardness: the spectrum
that should be measured at the Earth location at momenta
below ∼ 1 TeV/c is roughly ∝ p−4.4, only slightly steeper
than the injection spectrum (Q(p) ∝ p−4.3). This finding
reflects the fact that the Alfvén speed at the base of the
wind is very large and dominates CR advection up to high
energies. One could argue that a larger value of the den-
sity at the base of the wind would make the Alfvén speed
smaller, but in that case two problems appear: 1) it may

1026
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1030
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1032

100 101 102 103 104 105

f(
p)

p4.
7  (

cg
s)
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disk
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z=100 kpc

Figure 8. CR spectrum, f(p) × p4.7, in the reference case, at
different locations in the wind: base of the wind (red solid line),
z = 10 kpc (green dashed line), z = 50 kpc (blue short-dashed
line) and z = 100 kpc (pink dotted line).

become harder if not impossible to launch the wind because
of excessive baryonic load. In other words, for a given CR
pressure at the base, there may be cases in which the wind
is not launched. 2) When the wind is in fact launched, its
initial velocity may easily be super-Alfvenic, so that again
advection dominates up to relatively high energies.

This result on the spectrum of Galactic CRs appears
to be at odds with previous results by Ptuskin et al. (1997),
where a toy model for the velocity scaling with z provided
different results, of apparently easy interpretation. Since the
argument of Ptuskin et al. (1997) is rather simple, we report
it here and we explain why this simple approach does not
apply to realistic cases of CR-driven winds. The basic as-
sumption of Ptuskin et al. (1997) is that the advection ve-
locity (dominated by the Alfvén speed) scales approximately
linear with z, vA ∼ ηz. Now, it is easy to imagine that while
the advection velocity increases with z, it reaches a critical
distance, s∗, for which advection dominates upon diffusion.
This happens when

s2∗
D(p)

≈
s∗

vA(s∗)
⇒ s∗(p) ∝ D(p)1/2, (42)

where we used the assumption of linear relation vA ∼ ηz.
Now, when diffusion dominates, namely when z . s∗(p),
one can neglect the advection terms and make the approx-
imate statement (as in the standard diffusion model), that
D(p) ∂f

∂z
|z=0 ≈ −Q0(p)/2 ∝ p−γ . Now, using equations (21)

and (18) one can easily show that D(p) ∝ p2γ−7 (for a p−4

injection one gets a linear scaling of the diffusion coefficient
with momentum). The quantity s∗(p) plays the role of the
size of the diffusion volume and one can show that, similar
to a leaky box-like model, the equilibrium spectrum in the
disc is

f(p) ∼
Q0(p)

s∗(p)

s2∗
D(p)

∼ Q0(p)D(p)−1/2 ∼ p−2γ+7/2. (43)

For injection Q0(p) ∼ p−4.3 one infers an equilibrium spec-
trum f0(p) ∼ p−5.1 (notice the contrast with the standard
diffusion model within a given halo of size H , that predicts
f0(p) ∼ Q0(p)H/D(p)).

The problem with this argument, put forward by
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Figure 9. Effective boundary, s∗(p), between the diffusion dom-
inated and the advection dominated region of the wind in the
reference case.

Ptuskin et al. (1997), is that it is strictly valid only when
the advection velocity vanishes while approaching the base
of the wind. One can see from equation (35) that the as-
sumption that diffusion is the dominant process at z → 0
holds true only if U0 = 0. The solution of the combined hy-
drodynamical equations and transport equation of CRs as
presented above clearly shows that this is not the case. At
low energies the slope of the CR spectrum at the base of
the disc, as shown in Fig. 8, is ∼ 4.3 (see also Fig. 14, lower
panel), basically the same as the injection spectrum. The
same point can be also made by plotting s∗(p) (Fig. 9) and
the diffusion coefficient D(p) (Fig. 10): the simple scaling
s∗(p) ∝ D(p)1/2 can be easily seen to be not satisfied by the
actual solution of the problem. Notice that s∗(p) becomes
larger than Zs, the location where there is a transition to a
spherical-like flow, at p ∼ 1 TeV/c. At energies much larger
than this one can assume that the advection velocity tends
to a constant, uf . The equilibrium spectrum observed at
the Earth can then be written as f0(p) ∼ Q0(p)πR

2
d/(uf s

2
∗),

while s∗ ∝ D(p), so that the equilibrium spectrum has a
slope −3γ + 7. This effect corresponds to a steepening of
the equilibrium spectrum at the transition energy, that for
the values of the parameters used in Fig. 8, corresponds to
about ∼ 1 TeV.

Even qualitatively one can see that the CR spectrum
in Fig. 8 is quite different from the one actually observed at
the Earth: it is harder than observed at low energies, and
it is softer than observed at high energies, even though the
pressure carried by these CRs is as observed.

This example clearly shows that it is possible to con-
struct solutions of the hydrodynamical equations that corre-
spond to CR driven winds, with pressures at the base of the
wind that are compatible with observations and yet leading
to CR spectra that are not compatible with the CR spectra
observed at the Earth. In particular, the basic wind model
discussed in this section does not lead to any hardening of
the spectrum at high energy, hence it is not possible to fit
spectral hardening such as the ones observed by PAMELA
(Adriani et al. 2011) and AMS-02 (Aguilar et al. 2015). In
§5.2 below we discuss a situation in which this conclusion
may not apply.

1028
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Figure 10. Self-generated diffusion coefficient, D(p), in the ref-
erence case at different locations in the wind: base of the wind
(red solid line), z = 10 kpc (green dashed line), z = 50 kpc (blue
short-dashed line) and z = 100 kpc (pink dotted line). The tran-
sition from the cylindrical to the spherical geometry of the wind
flow is clearly visible in the momentum dependence of D(p).

5.2 The importance of the near-disc region

As already pointed out in the original work on CR driven
winds (Breitschwerdt et al. 1991) the region close to the disc
may be plagued by severe ion-neutral damping which sup-
presses the generation of Alfvén waves (Kulsrud & Cesarsky
1971). Since waves provide the coupling between CRs and
the ionized plasma, their severe damping leads to quenching
of the wind. In fact, ion-neutral damping was recognized as
a hindering factor for diffusion even in the absence of winds
(Skilling 1971; Holmes 1975): in these pioneering papers, the
near disc region was assumed to be wave-free and the prop-
agation of CRs in that region was taken to be ballistic. Dif-
fusion in the outer halo, where the density of neutral hydro-
gen is expected to drop and the role of ion-neutral damping
to become negligible, was considered as the actual diffusion
region. One could however speculate that some type of tur-
bulence may be maintained in the near-disc region, perhaps
due to SN explosions themselves, though the waves may be
considered to be isotropic, so that the effective Alfvén speed
vanishes.

In this section we discuss a scenario for the wind launch-
ing constructed in the following manner: the wind is assumed
to be launched at a distance z0 = 1 kpc from the disc and
the near-disc region (|z| < z0) is assumed to be characterised
by a given diffusion coefficient, in the following form:

D(p) = 3× 1028
(

p

3mpc

)1/3

cm2 s−1, (44)

and by an Alfvén velocity vA = 0. At z ≥ z0, namely in the
wind region, the diffusion coefficient is calculated as due to
self-generation through streaming instability, saturated by
NLLD, as in the reference case (§5.1).

It is important to emphasise that the near-disc region
is crucial to establish a connection between the sources and
the wind region. From the mathematical point of view this is
evident from equation (35), where the solution of the trans-
port equation in the disc, f0(p), is related to the injection
rate through the value of the advection velocity at z = 0.
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Figure 11. Density (red solid line) in units of 10−3 cm−3 and
temperature (greed dashed line) in units of 106 K limited to the
region where the wind is launched, z ≥ z0 = 1 kpc.

When such advection velocity is non zero, there is always a
range of values of the particle momentum (at low momenta)
where advection is more important than diffusion and the
equilibrium spectrum turns out to have roughly the same
slope as the injection spectrum. In the case that we consider
in this section, we are assuming that the near-disc region is
characterised by a vanishing advection velocity and finite as-
signed diffusion coefficient. From the technical point of view,
the computation is the same as described above. The only
minor difference is that, in order to avoid discontinuities in
the advection velocity, that is zero in the near disc region
but is not zero at z = z0, we assume that both the wind
velocity u(z) and the Alfvén speed vA(z) have a low z cutoff
at z < z0, so that both velocities drop to zero in a contin-
uous manner in the near disc region. We checked that the
details of such assumption do not have serious implications
for the solution of the problem, provided that the velocity
drops to zero fast enough inside the near-disc region. It is
also worth stressing that, contrary to the reference case il-
lustrated in §5.1, the CR pressure at the base of the wind
(z = z0) does not correspond to the CR pressure measured
at the Earth (z = 0). The criterion for convergence is still
that the pressure at z = 0 equals the observed CR pressure
at the Earth location (clearly this would be different if we
were interested at a different Galactocentric distance).

In order to recover the observed CR pressure in the
Galactic disc at the Sun’s location, in the model discussed
here we need to require that:

ξCR

0.1

RSN

1/30 yr−1
≈ 0.8.

The density and temperature of the wind, limited to the
region z ≥ z0 = 1 kpc where the wind can be launched are
plotted in Fig. 11. The corresponding wind velocity, Alfvén
speed and sound speed in the wind region are plotted in Fig.
12: the advection velocity is again dominated by the Alfvén
velocity at the base of the wind. The wind becomes super-
sonic at zc ∼ 20 kpc, and eventually reaches uf ∼ 400 km/s
at large distances from the disc. The pressures of the gas
and CRs are shown in Fig. 13, where the gas pressure is lim-
ited to the wind region while the CR pressure extends to the
whole diffusion region. We also plotted there the CR pres-
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Figure 12. Wind velocity (red solid line), Alfvén velocity (green
dashed line) and sound speed (blue dotted line) as a function of
the height z above the disc, limited to the region where the wind
is launched, z ≥ z0 = 1 kpc.
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Figure 13. CR Pressure and gas pressure in the case of Kol-
mogorov turbulence in the near-disc region. The green dashed
line shows the CR pressure as obtained from the solution of the
transport equation. The same calculation also returns the wave
pressure Pw(z) that is assumed to vanish in the hydrodynamical
equation.

sure that is returned by the kinetic calculation, to show that
with good accuracy it coincides with the one derived from
the hydrodynamical calculation. The wave pressure as de-
rived from the kinetic calculation is also shown: the plateau
at z < z0 has been estimated from the assigned diffusion
coefficient. The fact that Pw(z) is always much smaller than
all other terms, justifies the assumption of instantaneous
damping (Pw = 0) in the hydrodynamical computation.

Using the approach described in §2, §3 and §4, we also
calculated the spectrum of Galactic CRs: in the upper panel
of Fig. 14 we show the CR distribution in the Galactic
disc for the reference case compared to the case where the
wind is launched at a finite distance z0 from the disc. One
can immediately see the dramatic difference that the near-
disc region makes in terms of CR spectrum observed at the
Earth (or, for that matter, anywhere). In the second case
there are at least two spectral breaks that can be identi-
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Figure 14. Upper panel: spectrum of CRs in the disc of the
Galaxy at the position of the Sun for the reference case (red solid
line) and for the case in which the wind is launched at z0 = 1 kpc
from the disc and there is a near-disc region where the diffusion
coefficient is assigned and advection is absent (green dashed line).
The lower panel shows the corresponding slopes.

fied and explained in a reasonably easy way: the low energy
part of the spectrum is affected by advection (below ∼ 10
GeV) as well as from self-generation of waves at z ≥ z0 (at
10GeV . E . 1000 GeV). At energies higher than ∼ 1 TeV
the spectrum hardens. All these changes of slope are illus-
trated more clearly in the lower panel of Fig. 14, where we
show the slope of the CR distribution in the disc for the
reference case (red solid line) and for the case with a wind
launched at a finite distance z0 from the disc (green dashed
line).

The hard spectrum (slope ∼ 4.5 below ∼ 10 GeV re-
flects advection and is similar to the effect already seen in
non-linear models of galactic CR propagation (Aloisio et al.
2015, see for instance). On the other hand, the spectrum has
a continuous steepening at higher energies up to . 1 TeV:
this effects is also similar to the one claimed by Aloisio et al.
(2015) and reflects the very rapid energy dependence of the
self-generated diffusion coefficient. Finally the slope of the
spectrum becomes ∼ 4.63 at E & 1 TeV, because of the as-
sumption of Kolmogorov turbulence in the near disc region
(z ≤ z0). This hardening is qualitatively similar to the one
found by Tomassetti (2012) in a simple two zone model of
the Galactic halo: the low energy part is sensitive to the far

zone, while the high energy part is sensitive to the near zone,
where the assumption of Kolmogorov turbulence leads to an
expected slope 4.3(injection)+1/3(Kolmogorov) ≃ 4.63. The
important point we wish to make here is that the diffusion
coefficient that determines the low energy behaviour of the
bulk of CRs is not assumed here, but rather derived from
the condition of self-generation of waves and advection with
the CR induced Galactic wind, as calculated above.

Although here we did not make any attempt to fit our
curves to real data, it is interesting to notice that quali-
tatively the scenario presented in this section (contrary to
the reference model in §5.1) has the same feature as the
spectrum of CR protons as recently measured by PAMELA
(Adriani et al. 2011) and AMS-02 (Aguilar et al. 2015).

6 CONCLUSIONS

We presented a semi-analytical calculation of the structure
of a CR driven Galactic wind that returns the hydrody-
namical structure of the wind (velocity and pressure of the
plasma), and at the same time the spectrum of CRs at any
location in the disc or in the wind region. The transport
of CRs is described as advective and diffusive: advection oc-
curs at a local speed that is the sum of the Alfvén speed and
the wind speed at that point. Diffusion is due to scattering
off self-generated turbulence, as generated by the same CRs
due to streaming instability. The non-linear nature of the
problem is manyfold: the wind is driven by the CR gradient
in the z direction, perpendicular to the Galactic disc, that
results from the gradual escape of CRs from the Galaxy.
The force −∇PCR acts in the direction opposite to gravity,
so that, under certain conditions, it can lift ionized gas and
launch a wind. On the other hand the amount of waves gen-
erated by CRs depends on their transport, which in turn
depend on the wind speed. The diffusion coefficient is calcu-
lated in a self-consistent manner from the local spectrum of
waves excited by streaming instability and damped through
NLLD.

Qualitatively, we confirm earlier findings that CRs can
drive winds with asymptotic velocities of order several hun-
dred km s−1. Contrary to previous calculations, we also de-
rived the spectrum of CRs as observed at the Earth (or any
other location): for most of the parameter space for which
a CR driven wind is launched, the spectrum is in disagree-
ment with observations: the main reason for such a finding
is that the CR advection with the wind is very strong and
leads to hard spectra that are unlike the one observed at
the Earth. However, this conclusion is found to depend in a
critical way on the conditions in the near-disc region (z . 1
kpc). The conditions in such region affect the high energy
behavior of the spectrum, and change the launching speed
of the wind at z ∼ z0 ∼ 1 kpc, so that the low energy region
of the spectrum is also changed. For certain assumptions on
the diffusion coefficient in the near-disc region, the predicted
CR spectrum may resemble the observed one: as an instance
we showed one case in which the spectrum is relatively hard
at E . 10 GeV (as previously found by Aloisio et al. 2015),
steeper for 10 . E . 1000 GeV, and show a hardening at
higher energies as recently claimed by Adriani et al. (2011);
Aguilar et al. (2015). From the physical point of view, we
expect that the region at z . 1 kpc is reach in neutral gas,
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which may damp Alfvén waves through ion-neutral damp-
ing. This implies that the coupling between CRs and gas
may be exceedingly weak in this region so as to inhibit the
launch of the wind. In the near-disc region, diffusion, if any
is present, should be guaranteed by some source other than
CR self-generation.

The calculation presented here is very general and can
be applied to a variety of conditions. This will allow us to
explore the conditions in which a CR driven wind could de-
velop with a CR spectrum at the Earth resembling the ob-
served one. This type of calculations is also useful to develop
possible diagnostics of the existence of CR-driven winds in
our own Galaxy as well as in others.
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APPENDIX A: DERIVATION OF THE

HYDRODYNAMIC EQUATIONS

In this section we derive the hydrodynamic equations used
throughout this paper. They describe the macroscopic be-
haviour of the thermal plasma and CRs and their mu-
tual interactions. As we already pointed out in Sec. 2, the
wave component is not present in these equations because
we are assuming that all Alfvén waves (generated through
CR streaming instability) are locally dumped on short time
scales, so that the energy fed by CRs into waves just results
in the heating of the gas. Here we are also neglecting any ex-
ternal loss of mass, momentum and energy. A general form
of those equations, with and without damping of waves, is
reported in Breitschwerdt et al. (1991).

A1 Gas mass conservation and equation of motion

In absence of any mass and momentum external loss, the
time dependent gas mass conservation and equation of mo-
tion read

Dρ

Dt
= −ρ~∇ · ~u, (A1)

ρ
D~u

Dt
= −~∇(Pg + Pc)− ρ~∇Φ, (A2)

where ρ, ~u, Pg , Pc and Φ are the gas density, velocity and
pressure, the CR pressure and the galactic gravitational po-
tential respectively. D/Dt = ∂/∂t + ~u · ~∇ is the convective
derivative.

A2 Gas internal energy and total energy

The internal energy of the gas in a volume V is given by

ǫg =
PgV

γg − 1
(A3)

and its time evolution is given by

Dǫg
Dt

= −Pg
DV

Dt
− ~vA · ~∇PcV (A4)

where on the right hand side we find the work done on the
gas when V changes and the energy input due to damping of
the self generated Alfvén waves. In fact, as it will be shown
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in § A4, the hydrodynamic counterpart of the CR streaming
instability is given by the term ~vA · ~∇Pc, where ~vA is the
Alfvén speed and Pc the CR pressure. In terms of ρ, and
using equation (A1), we get

D

Dt

(

Pg

γg − 1

1

ρ

)

= −
Pg

ρ
~∇ · ~u−

1

ρ
~vA · ~∇Pc. (A5)

The gas total energy per unit volume is the sum of the kinetic
and internal energy per unit volume

ǫ =
1

2
ρu2 +

Pg

γg − 1
. (A6)

Making use of equations (A1), (A2) and (A5), we get the
equation for the gas total energy

D

Dt

(

1

2
ρu2 +

Pg

γg − 1

)

= −~∇ · ~u

(

1

2
ρu2 +

γgPg

γg − 1

)

(A7)

− ~u · ~∇(Pg + Pc)− ~vA · ∇Pc − ρ~u · ~∇Φ.

A3 CR energy

The time dependent CR transport equation reads

∂f

∂t
+(~u+~vA) · ~∇f = ~∇·

[

D~∇f
]

+
[

~∇ · (~u+ ~vA)
] p

3

∂f

∂p
(A8)

where f is the CR distribution function and D the CR dif-
fusion coefficient. We also introduce the CR energy density
and pressure

ǫc =

∫

∞

0

dp 4πp2T (p)f(z, p), (A9)

Pc =

∫

∞

0

dp
4π

3
p2pvf(z, p), (A10)

where T (p) =
√

p2c2 + (mc2)2 − mc2 is the kinetic energy.
Multiplying the transport equation by 4π p2T (p) and inte-
grating in p we get

∂ǫc
∂t

+ (~u+ ~vA) · ~∇ǫc = ~∇ ·
[

D~∇ǫc
]

+

+ ~∇ · (~u+ ~vA)

∫

∞

0

4

3
πdpp3T (p)

∂f

∂p
(A11)

where we introduced the average diffusion coefficient

D(z) =

∫

∞

0
dp 4πp2T (p)D(z, p)~∇f
∫

∞

0
dp 4πp2T (p)~∇f

. (A12)

The last integral can be performed by parts, using the fact
that dT (p)/dp = v. After rearranging terms and introducing
the effective CR adiabatic index ǫc = Pc/(γc−1) we obtain:

∂ǫc
∂t

+ ~∇·

[

(~u+ ~vA)
γcPc

γc − 1

]

= ~∇·

[

D
~∇Pc

γc − 1

]

+(~u+~vA)· ~∇Pc.

(A13)

A4 Wave energy

The time evolution of the Alfvén wave spectral energy den-
sityW (~z, p), taking into account wave advection by the ther-
mal plasma and wave generation by CR streaming instabil-
ity, is given in Jones (1993)

∂W

∂t
+ ~∇ ·

[(

3

2
~u+ ~vA

)

W

]

=
1

2
~u · ~∇W − ΓCRW (A14)

where ΓCR (see also equation 20) is the wave growth rate
due to CR streaming instability (k is the wave number and
B0 the average magnetic field)

ΓCR =
16π2

3

~vA
kWB2

0

·

∫

∞

0

dpp4v(p)δ

(

p−
qB0

kc

)

~∇f. (A15)

We also define the wave energy density and pressure

ǫw =

∫

∞

k0

B0
2

4π
W (z, k)dk (A16)

Pw =
ǫw
2
. (A17)

The hydrodynamic version of the wave equation can be ob-

tained by integrating in
∫

∞

k0

B0
2

4π
dk. The integration of the

streaming instability term gives

∫

∞

k0

B0
2

4π
ΓCRW (z, k)dk (A18)

=

∫

∞

0

∫

∞

k0

4π

3

~vA
k

· ~∇fp4v(p) δ

(

p−
qB0

kc

)

dpdk

=

∫

∞

0

∫

∞

k0

4π

3
~vA · ~∇fp4v(p)

kc

qB0

δ

(

k −
qB0

pc

)

dpdk

= ~vA · ~∇

∫

∞

0

4π

3
fv(p)p3dp

= ~vA · ~∇Pc

where we used the properties of the Dirac’s delta and the
definition of Pc given in equation (A10). Finally, the equa-
tion for the wave energy is

∂ǫw
∂t

+ ~∇ · [(3~u+ 2~vA)Pw] = ~u · ~∇Pw − ~vA · ~∇Pc. (A19)

In our approach we assume that all generated waves are lo-
cally and immediately dumped, so that the hydrodynamic
equation for waves is not necessary. On the other hand,
the term of wave generation by CR streaming instability,
~vA · ~∇Pc, enters the right hand side of the equation for the
gas pressure (A5) because the damped waves result in gas
heating.

APPENDIX B: STATIONARY

HYDRODYNAMIC EQUATIONS IN THE FLUX

TUBE

We are dealing with a steady one-dimensional flow, in which
the flux tube geometry is preassigned as shown in Fig. 1.
The stationary regime is obtained by setting ∂/∂t = 0 in
the hydrodynamic equations. The stationary hydrodynamic
equations are listed in § 2. As for the flux tube geometry,
referring to Fig. 1, if z is the vertical coordinate and A(z)
the flux tube area, the divergence and gradient operators
become

~∇S =
dS

dz
ẑ (B1)

~∇ · ~V =
1

A(z)

d

dz

[

~A(z) · ~V
]

. (B2)
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By applying this prescription for the gradient and divergence
operators to the stationary equations we get

ρuA = const, (B3)

AB = const, (B4)

ρu
d

dz

(

u2

2
+ Φ

)

= −u
d

dz
(Pg + Pc) , (B5)

dPg

dz
= γg

Pg

ρ

dρ

dz
− (γg − 1)

vA
u

dPc

dz
(B6)

ρuA
d

dz

(

u2

2
+

γg
γg − 1

Pg

ρ
+ Φ

)

= −A(u+ vA)
dPc

dz
, (B7)

dPc

dz
=

γcPc

ρ

2u+ vA
2(u+ vA −D)

dρ

dz
. (B8)

In the derivation of equation (B8) we defined

D =
d
dz

(

AD dPc

dz

)

A dPc

dz

(B9)

and we used

d(uA)

dz
= −

uA

ρ

dρ

dz
(B10)

d(vAA)

dz
= −

vAA

2ρ

dρ

dz
. (B11)

B1 First integrals

It is possible to derive from the hydrodynamic equations
two first integrals which come in handy when searching for
the wind solution. The first one derives directly from the
total energy conservation: summing equations (4) and (5)
and moving to the flux tube geometry, we get

u2

2
+

γg
γg − 1

Pg

ρ
+Φ+

γc
γc − 1

Pc

ρ

u+ vA
u

−
D dPc

dz

(γc − 1)ρu
= const.

(B12)

The other first integral is obtained from equation (B8) when
D = 0, i.e when D = 0. Due to this limitation, this first inte-
gral is only used in the very first iteration of our calculation,
where we assume D = 0.

In fact, using equations (B10) and (B11)

d

dz
(A(u+ vA)) = −

A(2u+ vA)

2ρ

dρ

dz
, (B13)

thus dPc/dz in equation (B8) becomes

dPc

dz
= −

γcPc

A(u+ vA)

d

dz
[A(u+ vA)] (B14)

from which we finally get

Pc [A(u+ vA)]
γc = const. (B15)

B2 The wind equation

Starting from equation (B5) and using equations (B6) and
(B8) we get the so-called wind equation, i.e an equation for
the flow speed,

du

dz
= u

c2∗
1

A
dA
dz

− dΦ
dz

u2 − c2∗
(B16)

where we defined the “compound sound speed”

c2∗ = γg
Pg

ρ
+ γc

Pc

ρ

[

1− (γg − 1)
vA
u

] 2u+ vA
2(u+ vA −D)

. (B17)
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