28 research outputs found

    Detection of a gammaretrovirus, XMRV, in the human population: Open questions and implications for xenotransplantation

    Get PDF
    XMRV (xenotropic murine leukaemia virus-related virus) is a gammaretrovirus that has been detected in human patients with prostate carcinoma, chronic fatigue syndrome (CFS) and also in a small percentage of clinically healthy individuals. It is not yet clear whether the distribution of this virus is primarily limited to the USA or whether it is causally associated with human disease. If future investigations confirm a broad distribution of XMRV and its association with disease, this would have an impact on xenotransplantation of porcine tissues and organs. Xenotransplantation is currently being developed to compensate for the increasing shortage of human material for the treatment of tissue and organ failure but could result in the transmission of porcine pathogens. Maintenance of pathogen-free donor animals will dramatically reduce this risk, but some of the porcine endogenous retroviruses (PERVs) found in the genome of all pigs, can produce infectious virus and infect cultured human cells. PERVs are closely related to XMRV so it is critical to develop tests that discriminate between them. Since recombination can occur between viruses, and recombinants can exhibit synergism, recipients should be tested for XMRV before xenotransplantation

    The discovery of endogenous retroviruses

    Get PDF
    When endogenous retroviruses (ERV) were discovered in the late 1960s, the Mendelian inheritance of retroviral genomes by their hosts was an entirely new concept. Indeed Howard M Temin's DNA provirus hypothesis enunciated in 1964 was not generally accepted, and reverse transcriptase was yet to be discovered. Nonetheless, the evidence that we accrued in the pre-molecular era has stood the test of time, and our hypothesis on ERV, which one reviewer described as 'impossible', proved to be correct. Here I recount some of the key observations in birds and mammals that led to the discovery of ERV, and comment on their evolution, cross-species dispersion, and what remains to be elucidated

    The First Sequenced Carnivore Genome Shows Complex Host-Endogenous Retrovirus Relationships

    Get PDF
    Host-retrovirus interactions influence the genomic landscape and have contributed substantially to mammalian genome evolution. To gain further insights, we analyzed a female boxer (Canis familiaris) genome for complexity and integration pattern of canine endogenous retroviruses (CfERV). Intriguingly, the first such in-depth analysis of a carnivore species identified 407 CfERV proviruses that represent only 0.15% of the dog genome. In comparison, the same detection criteria identified about six times more HERV proviruses in the human genome that has been estimated to contain a total of 8% retroviral DNA including solitary LTRs. These observed differences in man and dog are likely due to different mechanisms to purge, restrict and protect their genomes against retroviruses. A novel group of gammaretrovirus-like CfERV with high similarity to HERV-Fc1 was found to have potential for active retrotransposition and possibly lateral transmissions between dog and human as a result of close interactions during at least 10.000 years. The CfERV integration landscape showed a non-uniform intra- and inter-chromosomal distribution. Like in other species, different densities of ERVs were observed. Some chromosomal regions were essentially devoid of CfERVs whereas other regions had large numbers of integrations in agreement with distinct selective pressures at different loci. Most CfERVs were integrated in antisense orientation within 100 kb from annotated protein-coding genes. This integration pattern provides evidence for selection against CfERVs in sense orientation relative to chromosomal genes. In conclusion, this ERV analysis of the first carnivorous species supports the notion that different mammals interact distinctively with endogenous retroviruses and suggests that retroviral lateral transmissions between dog and human may have occurred

    Human and murine APOBEC3s restrict replication of koala retrovirus by different mechanisms

    Get PDF
    Background: Koala retrovirus (KoRV) is an endogenous and exogenous retrovirus of koalas that may cause lymphoma. As for many other gammaretroviruses, the KoRV genome can potentially encode an alternate form of Gag protein, glyco-gag. Results: In this study, a convenient assay for assessing KoRV infectivity in vitro was employed: the use of DERSE cells (initially developed to search for infectious xenotropic murine leukemia-like viruses). Using infection of DERSE and other human cell lines (HEK293T), no evidence for expression of glyco-gag by KoRV was found, either in expression of glyco-gag protein or changes in infectivity when the putative glyco-gag reading frame was mutated. Since glyco-gag mediates resistance of Moloney murine leukemia virus to the restriction factor APOBEC3, the sensitivity of KoRV (wt or putatively mutant for glyco-gag) to restriction by murine (mA3) or human APOBEC3s was investigated. Both mA3 and hA3G potently inhibited KoRV infectivity. Interestingly, hA3G restriction was accompanied by extensive G → A hypermutation during reverse transcription while mA3 restriction was not. Glyco-gag status did not affect the results. Conclusions: These results indicate that the mechanisms of APOBEC3 restriction of KoRV by hA3G and mA3 differ (deamination dependent vs. independent) and glyco-gag does not play a role in the restriction

    Induction of neutralizing antibodies specific for the envelope proteins of the koala retrovirus by immunization with recombinant proteins or with DNA

    Get PDF
    Background: The koala retrovirus (KoRV) is the result of a transspecies transmission of a gammaretrovirus with fatal consequences for the new host. Like many retroviruses, KoRV induces lymphoma, leukemia and an immunodeficiency that is associated with opportunistic infections in the virus-infected animals. We recently reported the induction of neutralizing antibodies by immunization with the recombinant ectodomain of the transmembrane envelope protein p15E of KoRV. Since the neutralization titers of the p15E-specific sera were only moderate, we investigated the use of the surface envelope protein gp70 to induce neutralizing antibodies. Findings: We immunized rats and goats with the recombinant gp70 protein of the KoRV, an unglycosylated protein of 52kD (rgp70/p52) or with the corresponding DNA. In parallel we immunized with recombinant rp15E or with a combination of rp15E and rgp70/p52. In all cases binding and neutralizing antibodies were induced. The gp70-specific sera had titers of neutralizing antibodies that were 15-fold higher than the p15E-specific sera. Combining rp15E and rgp70/p52 did not significantly increase neutralizing titers compared to rgp70/p52 alone. High titers of neutralizing antibodies specific for gp70 were also induced by immunization with DNA. Since KoRV and PERV are closely related, we investigated cross-neutralization of the antisera. The antisera against p15E and gp70 of PERV and KoRV inhibited infection by both viruses. Conclusion: The envelope proteins of the KoRV may therefore form the basis of an effective preventive vaccine to protect uninfected koalas from infection and possibly an immunotherapeutic treatment for those already infected

    Long-lived memory B-cell responses following BCG vaccination.

    Get PDF
    The role of T-cells in immunity against Mycobacterium tuberculosis (M. tuberculosis) infection has been extensively studied, however, that of B-cells still remains comparatively unexplored. In this study, we determined the presence and frequencies of mycobacteria-specific memory B-cells (MBCs) in peripheral blood from clinically healthy, Bacillus Calmette Guerin (BCG) vaccinated (n = 79) and unvaccinated (n = 14) donors. Purified protein derivative (PPD)-specific MBCs were present in most donors (both vaccinated and unvaccinated) but their frequencies were significantly higher in vaccinated than in unvaccinated donors. MBCs specific for other mycobacterial antigens [antigen-85A (Ag85A), antigen-85B (Ag85B), 6 kDalton early secretory antigenic target (ESAT-6) and the 10 kDalton-culture filtrate protein (CFP-10)] were less prevalent than those recognising PPD. Furthermore, PPD-specific MBCs were detected in BCG vaccinated donors without ESAT-6 and CFP-10 specific responses. Together, these results indicate that BCG vaccination induces long-lived MBC responses. Similar patterns of response were seen when we examined mycobacteria-specific antibody and T-cell responses in these donors. Our data show for the first time that BCG vaccination elicits long-lived mycobacteria-specific MBC responses in healthy individuals, suggesting a more substantial role of B-cells in the response to BCG and other mycobacterial infections than previously thought

    The murine gammaherpesvirus-68 gp150 acts as an immunogenic decoy to limit virion neutralization.

    Get PDF
    Herpesviruses maintain long-term infectivity without marked antigenic variation. They must therefore evade neutralization by other means. Immune sera block murine gammaherpesvirus-68 (MHV-68) infection of fibroblasts, but fail to block and even enhance its infection of IgG Fc receptor-bearing cells, suggesting that the antibody response to infection is actually poor at ablating virion infectivity completely. Here we analyzed this effect further by quantitating the glycoprotein-specific antibody response of MHV-68 carrier mice. Gp150 was much the commonest glycoprotein target and played a predominant role in driving Fc receptor-dependent infection: when gp150-specific antibodies were boosted, Fc receptor-dependent infection increased; and when gp150-specific antibodies were removed, Fc receptor-dependent infection was largely lost. Neither gp150-specific monoclonal antibodies nor gp150-specific polyclonal sera gave significant virion neutralization. Gp150 therefore acts as an immunogenic decoy, distorting the MHV-68-specific antibody response to promote Fc receptor-dependent infection and so compromise virion neutralization. This immune evasion mechanism may be common to many non-essential herpesvirus glycoproteins
    corecore