67 research outputs found

    The peaked response of transpiration rate to vapour pressure deficit in field conditions can be explained by the temperature optimum of photosynthesis

    Full text link
    Leaf transpiration rate (E) frequently shows a peaked response to increasing vapour pressure deficit (D). The mechanisms for the decrease in E at high D, known as the 'apparent feed-forward response', are strongly debated but explanations to date have exclusively focused on hydraulic processes. However, stomata also respond to signals related to photosynthesis. We investigated whether the apparent feed-forward response of E to D in the field can be explained by the response of photosynthesis to temperature (T), which normally co-varies with D in field conditions. As photosynthesis decreases with increasing T past its optimum, it may drive a decrease in stomatal conductance (gs) that is additional to the response of gs to increasing D alone. If this additional decrease is sufficiently steep and coupling between A and gs occurs, it could cause an overall decrease in E with increasing D. We tested this mechanism using a gas exchange model applied to leaf-scale and whole-tree CO2 and H2O fluxes measured on Eucalyptus saligna growing in whole-tree chambers. A peaked response of E to D was observed at both leaf and whole-tree scales. We found that this peaked response was matched by a gas exchange model only when T effects on photosynthesis were incorporated. We conclude that field-based studies of the relationship between E and D need to consider signals related to changing photosynthetic rates in addition to purely hydraulic mechanisms. © 2014 Elsevier B.V

    Rooting depth explains [CO <inf>2</inf>]× drought interaction in Eucalyptus saligna

    Full text link
    Elevated atmospheric [CO 2] (eCa) often decreases stomatal conductance, which may delay the start of drought, as well as alleviate the effect of dry soil on plant water use and carbon uptake. We studied the interaction between drought and eCa in a whole-tree chamber experiment with Eucalyptus saligna. Trees were grown for 18 months in their Ca treatments before a 4-month dry-down. Trees grown in eCa were smaller than those grown in ambient Ca (aCa) due to an early growth setback that was maintained throughout the duration of the experiment. Pre-dawn leaf water potentials were not different between Ca treatments, but were lower in the drought treatment than the irrigated control. Counter to expectations, the drought treatment caused a larger reduction in canopy-average transpiration rates for trees in the eCa treatment compared with aCa. Total tree transpiration over the dry-down was positively correlated with the decrease in soil water storage, measured in the top 1.5 m, over the drying cycle; however, we could not close the water budget especially for the larger trees, suggesting soil water uptake below 1.5 m depth. Using neutron probe soil water measurements, we estimated fractional water uptake to a depth of 4.5 m and found that larger trees were able to extract more water from deep soil layers. These results highlight the interaction between rooting depth and response of tree water use to drought. The responses of tree water use to eCa involve interactions between tree size, root distribution and soil moisture availability that may override the expected direct effects of eCa. It is essential that these interactions be considered when interpreting experimental results. © 2011 The Author. Published by Oxford University Press. A ll rights reserved

    Whole-tree chambers for elevated atmospheric CO<inf>2</inf> experimentation and tree scale flux measurements in south-eastern Australia: The Hawkesbury Forest Experiment

    Full text link
    Resolving ecophysiological processes in elevated atmospheric CO2 (Ca) at scales larger than single leaves poses significant challenges. Here, we describe a field-based experimental system designed to grow trees up to 9m tall in elevated Ca with the capacity to control air temperature and simultaneously measure whole-tree gas exchange. In western Sydney, Australia, we established the Hawkesbury Forest Experiment (HFE) where we built whole-tree chambers (WTC) to measure whole-tree CO2 and water fluxes of an evergreen broadleaf tree, Eucalyptus saligna. A single E. saligna tree was grown from seedling to small tree within each of 12 WTCs; six WTCs were maintained at ambient Ca and six WTCs were maintained at elevated Ca, targeted at ambient Ca +240μmolmol-1. All 12 WTCs were controlled to track ambient outside air temperature (Tair) and air water vapour deficit (Dair). During the experimental period, Tair, Dair and Ca in the WTCs were within 0.5°C, 0.3kPa, and 15μmolmol-1 of the set-points for 90% of the time, respectively. Diurnal responses of whole-tree CO2 and water vapour fluxes are analysed, demonstrating the ability of the tree chamber system to measure rapid environmental responses of these fluxes of entire trees. The light response of CO2 uptake for entire trees showed a clear diurnal hysteresis, attributed to stomatal closure at high Dair. Tree scale CO2 fluxes confirm the hypothesised deleterious effect of chilling night-time temperatures on whole-tree carbon gain in this subtropical Eucalyptus. The whole-tree chamber flux data add an invaluable scale to measurements in both ambient and elevated Ca and allow us to elucidate the mechanisms driving tree productivity responses to elevated Ca in interaction with water availability and temperature. © 2010 Elsevier B.V

    Nitrogen limitation constrains sustainability of ecosystem response to CO2

    Full text link
    Enhanced plant biomass accumulation in response to elevated atmospheric CO2 concentration could dampen the future rate of increase in CO2 levels and associated climate warming. However, it is unknown whether CO2-induced stimulation of plant growth and biomass accumulation will be sustained or whether limited nitrogen (N) availability constrains greater plant growth in a CO2-enriched world(1-9). Here we show, after a six-year field study of perennial grassland species grown under ambient and elevated levels of CO2 and N, that low availability of N progressively suppresses the positive response of plant biomass to elevated CO2. Initially, the stimulation of total plant biomass by elevated CO2 was no greater at enriched than at ambient N supply. After four to six years, however, elevated CO2 stimulated plant biomass much less under ambient than enriched N supply. This response was consistent with the temporally divergent effects of elevated CO2 on soil and plant N dynamics at differing levels of N supply. Our results indicate that variability in availability of soil N and deposition of atmospheric N are both likely to influence the response of plant biomass accumulation to elevated atmospheric CO2. Given that limitations to productivity resulting from the insufficient availability of N are widespread in both unmanaged and managed vegetation(5,7-9), soil N supply is probably an important constraint on global terrestrial responses to elevated CO2.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62769/1/nature04486.pd

    Is analysing the nitrogen use at the plant canopy level a matter of choosing the right optimization criterion?

    Get PDF
    Optimization theory in combination with canopy modeling is potentially a powerful tool for evaluating the adaptive significance of photosynthesis-related plant traits. Yet its successful application has been hampered by a lack of agreement on the appropriate optimization criterion. Here we review how models based on different types of optimization criteria have been used to analyze traits—particularly N reallocation and leaf area indices—that determine photosynthetic nitrogen-use efficiency at the canopy level. By far the most commonly used approach is static-plant simple optimization (SSO). Static-plant simple optimization makes two assumptions: (1) plant traits are considered to be optimal when they maximize whole-stand daily photosynthesis, ignoring competitive interactions between individuals; (2) it assumes static plants, ignoring canopy dynamics (production and loss of leaves, and the reallocation and uptake of nitrogen) and the respiration of nonphotosynthetic tissue. Recent studies have addressed either the former problem through the application of evolutionary game theory (EGT) or the latter by applying dynamic-plant simple optimization (DSO), and have made considerable progress in our understanding of plant photosynthetic traits. However, we argue that future model studies should focus on combining these two approaches. We also point out that field observations can fit predictions from two models based on very different optimization criteria. In order to enhance our understanding of the adaptive significance of photosynthesis-related plant traits, there is thus an urgent need for experiments that test underlying optimization criteria and competing hypotheses about underlying mechanisms of optimization

    Grass strategies and grassland community responses to environmental drivers: a review

    Full text link

    Mechanisms linking plant productivity and water status for a temperate Eucalyptus forest flux site: Analysis over wet and dry years with a simple model

    Full text link
    A simple process-based model was applied to a tall Eucalyptus forest site over consecutive wet and dry years to examine the importance of different mechanisms linking productivity and water availability. Measured soil moisture, gas flux (CO2, H2O) and meteorological records for the site were used. Similar levels of simulated H2O flux in 'wet' and 'dry' years were achieved when water availability was not confined to the first 1.20 m of the soil profile, but was allowed to exceed it. Although the simulated effects of low soil and atmospheric water content on CO2 flux, presumably via reduction in stomatal aperture, also acted on transpiration, they were offset in the dry year by a higher vapour-pressure deficit. A sensitivity analysis identified the processes that were important in wet versus dry years, and on an intra-annual timeframe. Light-limited productivity dominated in both years, except for the driest period in the dry year. Vapour-pressure deficit affected productivity across more of each year than soil moisture, but both effects were larger in the dry year. The introduction of a reduced leaf area tended to decrease sensitivity in the dry year. Plant hydraulic architecture that increases plant available water, maximises productivity per unit water use and achieves lower sensitivity to low soil moisture levels should minimise production losses during dry conditions. © CSIRO 2008
    corecore