70 research outputs found

    Patterns of adiposity, vascular phenotypes and cognitive function in the 1946 British Birth Cohort.

    Get PDF
    BACKGROUND: The relationship between long-term exposure to whole body or central obesity and cognitive function, as well as its potential determinants, remain controversial. In this study, we assessed (1) the potential impact of 30 years exposure to different patterns of whole body and central adiposity on cognitive function at 60-64 years, (2) whether trajectories of central adiposity can provide additional information on later cognitive function compared to trajectories of whole body adiposity, and (3) the influence of vascular phenotypes on these associations. METHODS: The study included 1249 participants from the prospective cohort MRC National Survey of Health and Development. Body mass index (BMI), waist circumference (WC), and vascular (carotid intima-media thickness, carotid-femoral pulse wave velocity) and cognitive function (memory, processing speed, reaction time) data, at 60-64 years, were used to assess the associations between different patterns of adult WC or BMI (from 36 years of age) and late midlife cognitive performance, as well as the proportion of this association explained by cardiovascular phenotypes. RESULTS: Longer exposure to elevated WC was related to lower memory performance (p < 0.001 for both) and longer choice reaction time (p = 0.003). A faster gain of WC between 36 and 43 years of age was associated with the largest change in reaction time and memory test (P < 0.05 for all). Similar associations were observed when patterns of WC were substituted with patterns of BMI, but when WC and BMI were included in the same model, only patterns of WC remained significantly associated with cognitive function. Participants who dropped one BMI category and maintained a lower BMI had similar memory performance to those of normal weight during the whole follow-up. Conversely, those who dropped and subsequently regained one BMI category had a memory function similar to those with 30 years exposure to elevated BMI. Adjustment for vascular phenotypes, levels of cardiovascular risk factors, physical activity, education, childhood cognition and socioeconomic position did not affect these associations. CONCLUSIONS: Longer exposure to elevated WC or BMI and faster WC or BMI gains between 36 and 43 years are related to lower cognitive function at 60-64 years. Patterns of WC in adulthood could provide additional information in predicting late midlife cognitive function than patterns of BMI. The acquisition of an adverse cardiovascular phenotype associated with adiposity is unlikely to account for these relationships

    Genomic Analysis of QTLs and Genes Altering Natural Variation in Stochastic Noise

    Get PDF
    Quantitative genetic analysis has long been used to study how natural variation of genotype can influence an organism's phenotype. While most studies have focused on genetic determinants of phenotypic average, it is rapidly becoming understood that stochastic noise is genetically determined. However, it is not known how many traits display genetic control of stochastic noise nor how broadly these stochastic loci are distributed within the genome. Understanding these questions is critical to our understanding of quantitative traits and how they relate to the underlying causal loci, especially since stochastic noise may be directly influenced by underlying changes in the wiring of regulatory networks. We identified QTLs controlling natural variation in stochastic noise of glucosinolates, plant defense metabolites, as well as QTLs for stochastic noise of related transcripts. These loci included stochastic noise QTLs unique for either transcript or metabolite variation. Validation of these loci showed that genetic polymorphism within the regulatory network alters stochastic noise independent of effects on corresponding average levels. We examined this phenomenon more globally, using transcriptomic datasets, and found that the Arabidopsis transcriptome exhibits significant, heritable differences in stochastic noise. Further analysis allowed us to identify QTLs that control genomic stochastic noise. Some genomic QTL were in common with those altering average transcript abundance, while others were unique to stochastic noise. Using a single isogenic population, we confirmed that natural variation at ELF3 alters stochastic noise in the circadian clock and metabolism. Since polymorphisms controlling stochastic noise in genomic phenotypes exist within wild germplasm for naturally selected phenotypes, this suggests that analysis of Arabidopsis evolution should account for genetic control of stochastic variance and average phenotypes. It remains to be determined if natural genetic variation controlling stochasticity is equally distributed across the genomes of other multi-cellular eukaryotes

    Quantitative and Qualitative Stem Rust Resistance Factors in Barley Are Associated with Transcriptional Suppression of Defense Regulons

    Get PDF
    Stem rust (Puccinia graminis f. sp. tritici; Pgt) is a devastating fungal disease of wheat and barley. Pgt race TTKSK (isolate Ug99) is a serious threat to these Triticeae grain crops because resistance is rare. In barley, the complex Rpg-TTKSK locus on chromosome 5H is presently the only known source of qualitative resistance to this aggressive Pgt race. Segregation for resistance observed on seedlings of the Q21861 × SM89010 (QSM) doubled-haploid (DH) population was found to be predominantly qualitative, with little of the remaining variance explained by loci other than Rpg-TTKSK. In contrast, analysis of adult QSM DH plants infected by field inoculum of Pgt race TTKSK in Njoro, Kenya, revealed several additional quantitative trait loci that contribute to resistance. To molecularly characterize these loci, Barley1 GeneChips were used to measure the expression of 22,792 genes in the QSM population after inoculation with Pgt race TTKSK or mock-inoculation. Comparison of expression Quantitative Trait Loci (eQTL) between treatments revealed an inoculation-dependent expression polymorphism implicating Actin depolymerizing factor3 (within the Rpg-TTKSK locus) as a candidate susceptibility gene. In parallel, we identified a chromosome 2H trans-eQTL hotspot that co-segregates with an enhancer of Rpg-TTKSK-mediated, adult plant resistance discovered through the Njoro field trials. Our genome-wide eQTL studies demonstrate that transcript accumulation of 25% of barley genes is altered following challenge by Pgt race TTKSK, but that few of these genes are regulated by the qualitative Rpg-TTKSK on chromosome 5H. It is instead the chromosome 2H trans-eQTL hotspot that orchestrates the largest inoculation-specific responses, where enhanced resistance is associated with transcriptional suppression of hundreds of genes scattered throughout the genome. Hence, the present study associates the early suppression of genes expressed in this host–pathogen interaction with enhancement of R-gene mediated resistance

    Recent advances of metabolomics in plant biotechnology

    Get PDF
    Biotechnology, including genetic modification, is a very important approach to regulate the production of particular metabolites in plants to improve their adaptation to environmental stress, to improve food quality, and to increase crop yield. Unfortunately, these approaches do not necessarily lead to the expected results due to the highly complex mechanisms underlying metabolic regulation in plants. In this context, metabolomics plays a key role in plant molecular biotechnology, where plant cells are modified by the expression of engineered genes, because we can obtain information on the metabolic status of cells via a snapshot of their metabolome. Although metabolome analysis could be used to evaluate the effect of foreign genes and understand the metabolic state of cells, there is no single analytical method for metabolomics because of the wide range of chemicals synthesized in plants. Here, we describe the basic analytical advancements in plant metabolomics and bioinformatics and the application of metabolomics to the biological study of plants

    A systematic review of non-hormonal treatments of vasomotor symptoms in climacteric and cancer patients

    Get PDF
    corecore