220 research outputs found

    The Effects of Apolipoprotein F Deficiency on High Density Lipoprotein Cholesterol Metabolism in Mice

    Get PDF
    Apolipoprotein F (apoF) is 29 kilodalton secreted sialoglycoprotein that resides on the HDL and LDL fractions of human plasma. Human ApoF is also known as Lipid Transfer Inhibitor protein (LTIP) based on its ability to inhibit cholesteryl ester transfer protein (CETP)-mediated transfer events between lipoproteins. In contrast to other apolipoproteins, ApoF is predicted to lack strong amphipathic alpha helices and its true physiological function remains unknown. We previously showed that overexpression of Apolipoprotein F in mice reduced HDL cholesterol levels by 20–25% by accelerating clearance from the circulation. In order to investigate the effect of physiological levels of ApoF expression on HDL cholesterol metabolism, we generated ApoF deficient mice. Unexpectedly, deletion of ApoF had no substantial impact on plasma lipid concentrations, HDL size, lipid or protein composition. Sex-specific differences were observed in hepatic cholesterol content as well as serum cholesterol efflux capacity. Female ApoF KO mice had increased liver cholesteryl ester content relative to wild type controls on a chow diet (KO: 3.4+/−0.9 mg/dl vs. WT: 1.2+/−0.3 mg/dl, p<0.05). No differences were observed in ABCG1-mediated cholesterol efflux capacity in either sex. Interestingly, ApoB-depleted serum from male KO mice was less effective at promoting ABCA1-mediated cholesterol efflux from J774 macrophages relative to WT controls

    Effect of sedation with detomidine and butorphanol on pulmonary gas exchange in the horse

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sedation with α<sub>2</sub>-agonists in the horse is reported to be accompanied by impairment of arterial oxygenation. The present study was undertaken to investigate pulmonary gas exchange using the Multiple Inert Gas Elimination Technique (MIGET), during sedation with the α<sub>2</sub>-agonist detomidine alone and in combination with the opioid butorphanol.</p> <p>Methods</p> <p>Seven Standardbred trotter horses aged 3–7 years and weighing 380–520 kg, were studied. The protocol consisted of three consecutive measurements; in the unsedated horse, after intravenous administration of detomidine (0.02 mg/kg) and after subsequent butorphanol administration (0.025 mg/kg). Pulmonary function and haemodynamic effects were investigated. The distribution of ventilation-perfusion ratios (V<sub>A</sub>/Q) was estimated with MIGET.</p> <p>Results</p> <p>During detomidine sedation, arterial oxygen tension (PaO<sub>2</sub>) decreased (12.8 ± 0.7 to 10.8 ± 1.2 kPa) and arterial carbon dioxide tension (PaCO<sub>2</sub>) increased (5.9 ± 0.3 to 6.1 ± 0.2 kPa) compared to measurements in the unsedated horse. Mismatch between ventilation and perfusion in the lungs was evident, but no increase in intrapulmonary shunt could be detected. Respiratory rate and minute ventilation did not change. Heart rate and cardiac output decreased, while pulmonary and systemic blood pressure and vascular resistance increased. Addition of butorphanol resulted in a significant decrease in ventilation and increase in PaCO<sub>2</sub>. Alveolar-arterial oxygen content difference P(A-a)O<sub>2 </sub>remained impaired after butorphanol administration, the V<sub>A</sub>/Q distribution improved as the decreased ventilation and persistent low blood flow was well matched. Also after subsequent butorphanol no increase in intrapulmonary shunt was evident.</p> <p>Conclusion</p> <p>The results of the present study suggest that both pulmonary and cardiovascular factors contribute to the impaired pulmonary gas exchange during detomidine and butorphanol sedation in the horse.</p

    Patient Acceptance of Noninvasive and Invasive Coronary Angiography

    Get PDF
    BACKGROUND: Noninvasive angiography using multislice computed tomography (MSCT) is superior to magnetic resonance imaging (MRI) for detection of coronary stenoses. We compared patient acceptance of these two noninvasive diagnostic tests and invasive conventional coronary angiography (Angio). METHODS AND FINDINGS: A total of 111 consecutive patients with suspected coronary artery disease underwent MSCT, MRI, and Angio. Subsequently, patient acceptance of the three tests was evaluated with questionnaires in all patients. The main acceptance variables were preparation and information prior to the test, degree of concern, comfort, degree of helplessness, pain (on visual analog scales), willingness to undergo the test again, and overall satisfaction. Preparation for each test was not rated significantly differently, whereas patients were significantly more concerned about Angio than the two noninvasive tests (p<0.001). No pain during MSCT, MRI, and Angio as assessed on visual analog scales (0 to 100) was reported by 99, 93, and 31 patients, respectively. Among the 82 patients who felt pain during at least one procedure, both CT (0.9±4.5) and MRI (5.2±16.6) were significantly less painful than Angio (24.6±23.4, both p<0.001). MSCT was considered significantly more comfortable (1.49±0.64) than MRI (1.75±0.81, p<0.001). In both the no-revascularization (55 patients) and the revascularization group (56 patients), the majority of the patients (73 and 71%) would prefer MSCT to MRI and Angio for future imaging of the coronary arteries. None of the patients indicated to be unwilling to undergo MSCT again. The major advantages patients attributed to MSCT were its fast, uncomplicated, noninvasive, and painless nature. CONCLUSIONS: Noninvasive coronary angiography with MSCT is considered more comfortable than MRI and both MSCT and MRI are less painful than Angio. Patient preference for MSCT might tip the scales in favor of this test provided that the diagnostic accuracy of MSCT can be shown to be high enough for clinical application

    Novel Crystalline SiO2 Nanoparticles via Annelids Bioprocessing of Agro-Industrial Wastes

    Get PDF
    The synthesis of nanoparticles silica oxide from rice husk, sugar cane bagasse and coffee husk, by employing vermicompost with annelids (Eisenia foetida) is reported. The product (humus) is calcinated and extracted to recover the crystalline nanoparticles. X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and dynamic light scattering (DLS) show that the biotransformation allows creating specific crystalline phases, since equivalent particles synthesized without biotransformation are bigger and with different crystalline structure

    Crosstalk between Chemokine Receptor CXCR4 and Cannabinoid Receptor CB2 in Modulating Breast Cancer Growth and Invasion

    Get PDF
    Cannabinoids bind to cannabinoid receptors CB(1) and CB(2) and have been reported to possess anti-tumorigenic activity in various cancers. However, the mechanisms through which cannabinoids modulate tumor growth are not well known. In this study, we report that a synthetic non-psychoactive cannabinoid that specifically binds to cannabinoid receptor CB(2) may modulate breast tumor growth and metastasis by inhibiting signaling of the chemokine receptor CXCR4 and its ligand CXCL12. This signaling pathway has been shown to play an important role in regulating breast cancer progression and metastasis.We observed high expression of both CB(2) and CXCR4 receptors in breast cancer patient tissues by immunohistochemical analysis. We further found that CB(2)-specific agonist JWH-015 inhibits the CXCL12-induced chemotaxis and wound healing of MCF7 overexpressing CXCR4 (MCF7/CXCR4), highly metastatic clone of MDA-MB-231 (SCP2) and NT 2.5 cells (derived from MMTV-neu) by using chemotactic and wound healing assays. Elucidation of the molecular mechanisms using various biochemical techniques and confocal microscopy revealed that JWH-015 treatment inhibited CXCL12-induced P44/P42 ERK activation, cytoskeletal focal adhesion and stress fiber formation, which play a critical role in breast cancer invasion and metastasis. In addition, we have shown that JWH-015 significantly inhibits orthotopic tumor growth in syngenic mice in vivo using NT 2.5 cells. Furthermore, our studies have revealed that JWH-015 significantly inhibits phosphorylation of CXCR4 and its downstream signaling in vivo in orthotopic and spontaneous breast cancer MMTV-PyMT mouse model systems.This study provides novel insights into the crosstalk between CB(2) and CXCR4/CXCL12-signaling pathways in the modulation of breast tumor growth and metastasis. Furthermore, these studies indicate that CB(2) receptors could be used for developing innovative therapeutic strategies against breast cancer

    Gender Differences in Associations of Glutamate Decarboxylase 1 Gene (GAD1) Variants with Panic Disorder

    Get PDF
    Background: Panic disorder is common (5% prevalence) and females are twice as likely to be affected as males. The heritable component of panic disorder is estimated at 48%. Glutamic acid dehydrogenase GAD1, the key enzyme for the synthesis of the inhibitory and anxiolytic neurotransmitter GABA, is supposed to influence various mental disorders, including mood and anxiety disorders. In a recent association study in depression, which is highly comorbid with panic disorder, GAD1 risk allele associations were restricted to females. Methodology/Principal Findings: Nineteen single nucleotide polymorphisms (SNPs) tagging the common variation in GAD1 were genotyped in two independent gender and age matched case-control samples (discovery sample n = 478; replication sample n = 584). Thirteen SNPs passed quality control and were examined for gender-specific enrichment of risk alleles associated with panic disorder by using logistic regression including a genotype×gender interaction term. The latter was found to be nominally significant for four SNPs (rs1978340, rs3762555, rs3749034, rs2241165) in the discovery sample; of note, the respective minor/risk alleles were associated with panic disorder only in females. These findings were not confirmed in the replication sample; however, the genotype×gender interaction of rs3749034 remained significant in the combined sample. Furthermore, this polymorphism showed a nominally significant association with the Agoraphobic Cognitions Questionnaire sum score. Conclusions/Significance: The present study represents the first systematic evaluation of gender-specific enrichment of risk alleles of the common SNP variation in the panic disorder candidate gene GAD1. Our tentative results provide a possible explanation for the higher susceptibility of females to panic disorder

    The Use of PRV-Bartha to Define Premotor Inputs to Lumbar Motoneurons in the Neonatal Spinal Cord of the Mouse

    Get PDF
    The neonatal mouse has become a model system for studying the locomotor function of the lumbar spinal cord. However, information about the synaptic connectivity within the governing neural network remains scarce. A neurotropic pseudorabies virus (PRV) Bartha has been used to map neuronal connectivity in other parts of the nervous system, due to its ability to travel trans-neuronally. Its use in spinal circuits regulating locomotion has been limited and no study has defined the time course of labelling for neurons known to project monosynaptically to motoneurons.Here we investigated the ability of PRV Bartha, expressing green and/or red fluorescence, to label spinal neurons projecting monosynaptically to motoneurons of two principal hindlimb muscles, the tibialis anterior (TA) and gastrocnemius (GC). As revealed by combined immunocytochemistry and confocal microscopy, 24-32 h after the viral muscle injection the label was restricted to the motoneuron pool while at 32-40 h the fluorescence was seen in interneurons throughout the medial and lateral ventral grey matter. Two classes of ipsilateral interneurons known to project monosynaptically to motoneurons (Renshaw cells and cells of origin of C-terminals) were consistently labeled at 40 h post-injection but also a group in the ventral grey matter contralaterally. Our results suggest that the labeling of last order interneurons occurred 8-12 h after motoneuron labeling and we presume this is the time taken by the virus to cross one synapse, to travel retrogradely and to replicate in the labeled cells.The study establishes the time window for virally-labelling monosynaptic projections to lumbar motoneurons following viral injection into hindlimb muscles. Moreover, it provides a good foundation for intracellular targeting of the labeled neurons in future physiological studies and better understanding the functional organization of the lumbar neural networks
    corecore