30 research outputs found

    Carbon monoxide production from five volatile anesthetics in dry sodalime in a patient model: halothane and sevoflurane do produce carbon monoxide; temperature is a poor predictor of carbon monoxide production

    Get PDF
    BACKGROUND: Desflurane and enflurane have been reported to produce substantial amounts of carbon monoxide (CO) in desiccated sodalime. Isoflurane is said to produce less CO and sevoflurane and halothane should produce no CO at all. The purpose of this study is to measure the maximum amounts of CO production for all modern volatile anesthetics, with completely dry sodalime. We also tried to establish a relationship between CO production and temperature increase inside the sodalime. METHODS: A patient model was simulated using a circle anesthesia system connected to an artificial lung. Completely desiccated sodalime (950 grams) was used in this system. A low flow anesthesia (500 ml/min) was maintained using nitrous oxide with desflurane, enflurane, isoflurane, halothane or sevoflurane. For immediate quantification of CO production a portable gas chromatograph was used. Temperature was measured within the sodalime container. RESULTS: Peak concentrations of CO were very high with desflurane and enflurane (14262 and 10654 ppm respectively). It was lower with isoflurane (2512 ppm). We also measured small concentrations of CO for sevoflurane and halothane. No significant temperature increases were detected with high CO productions. CONCLUSION: All modern volatile anesthetics produce CO in desiccated sodalime. Sodalime temperature increase is a poor predictor of CO production

    Effects of Increased Nitrogen Deposition and Precipitation on Seed and Seedling Production of Potentilla tanacetifolia in a Temperate Steppe Ecosystem

    Get PDF
    The responses of plant seeds and seedlings to changing atmospheric nitrogen (N) deposition and precipitation regimes determine plant population dynamics and community composition under global change.In a temperate steppe in northern China, seeds of P. tanacetifolia were collected from a field-based experiment with N addition and increased precipitation to measure changes in their traits (production, mass, germination). Seedlings germinated from those seeds were grown in a greenhouse to examine the effects of improved N and water availability in maternal and offspring environments on seedling growth. Maternal N-addition stimulated seed production, but it suppressed seed mass, germination rate and seedling biomass of P. tanacetifolia. Maternal N-addition also enhanced responses of seedlings to N and water addition in the offspring environment. Maternal increased-precipitation stimulated seed production, but it had no effect on seed mass and germination rate. Maternal increased-precipitation enhanced seedling growth when grown under similar conditions, whereas seedling responses to offspring N- and water-addition were suppressed by maternal increased-precipitation. Both offspring N-addition and increased-precipitation stimulated growth of seedlings germinated from seeds collected from the maternal control environment without either N or water addition. Our observations indicate that both maternal and offspring environments can influence seedling growth of P. tanacetifolia with consequent impacts on the future population dynamics of this species in the study area.The findings highlight the importance of the maternal effects on seed and seedling production as well as responses of offspring to changing environmental drivers in mechanistic understanding and projecting of plant population dynamics under global change
    corecore