108 research outputs found

    Use of Intravenous Peramivir for Treatment of Severe Influenza A(H1N1)pdm09

    Get PDF
    Oral antiviral agents to treat influenza are challenging to administer in the intensive care unit (ICU). We describe 57 critically ill patients treated with the investigational intravenous neuraminidase inhibitor drug peramivir for influenza A (H1N1)pdm09 [pH1N1]. Most received late peramivir treatment following clinical deterioration in the ICU on enterically-administered oseltamivir therapy. The median age was 40 years (range 5 months-81 years). Common clinical complications included pneumonia or acute respiratory distress syndrome requiring mechanical ventilation (54; 95%), sepsis requiring vasopressor support (34/53; 64%), acute renal failure requiring hemodialysis (19/53; 36%) and secondary bacterial infection (14; 25%). Over half (29; 51%) died. When comparing the 57 peramivir-treated cases with 1627 critically ill cases who did not receive peramivir, peramivir recipients were more likely to be diagnosed with pneumonia/acute respiratory distress syndrome (p = 0.0002) or sepsis (p = <0.0001), require mechanical ventilation (p = <0.0001) or die (p = <0.0001). The high mortality could be due to the pre-existing clinical severity of cases prior to request for peramivir, but also raises questions about peramivir safety and effectiveness in hospitalized and critically ill patients. The use of peramivir merits further study in randomized controlled trials, or by use of methods such as propensity scoring and matching, to assess clinical effectiveness and safety

    Of gastro and the gold standard: evaluation and policy implications of norovirus test performance for outbreak detection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The norovirus group (NVG) of caliciviruses are the etiological agents of most institutional outbreaks of gastroenteritis in North America and Europe. Identification of NVG is complicated by the non-culturable nature of this virus, and the absence of a diagnostic gold standard makes traditional evaluation of test characteristics problematic.</p> <p>Methods</p> <p>We evaluated 189 specimens derived from 440 acute gastroenteritis outbreaks investigated in Ontario in 2006–07. Parallel testing for NVG was performed with real-time reverse-transcriptase polymerase chain reaction (RT<sup>2</sup>-PCR), enzyme immunoassay (EIA) and electron microscopy (EM). Test characteristics (sensitivity and specificity) were estimated using latent class models and composite reference standard methods. The practical implications of test characteristics were evaluated using binomial probability models.</p> <p>Results</p> <p>Latent class modelling estimated sensitivities of RT<sup>2</sup>-PCR, EIA, and EM as 100%, 86%, and 17% respectively; specificities were 84%, 92%, and 100%; estimates obtained using a composite reference standard were similar. If all specimens contained norovirus, RT<sup>2</sup>-PCR or EIA would be associated with > 99.9% likelihood of at least one test being positive after three specimens tested. Testing of more than 5 true negative specimens with RT<sup>2</sup>-PCR would be associated with a greater than 50% likelihood of a false positive test.</p> <p>Conclusion</p> <p>Our findings support the characterization of EM as lacking sensitivity for NVG outbreaks. The high sensitivity of RT<sup>2</sup>-PCR and EIA permit identification of NVG outbreaks with testing of limited numbers of clinical specimens. Given risks of false positive test results, it is reasonable to limit the number of specimens tested when RT<sup>2</sup>-PCR or EIA are available.</p

    High Adherence Is Necessary to Realize Health Gains from Water Quality Interventions

    Get PDF
    BACKGROUND: Safe drinking water is critical for health. Household water treatment (HWT) has been recommended for improving access to potable water where existing sources are unsafe. Reports of low adherence to HWT may limit the usefulness of this approach, however. METHODS AND FINDINGS: We constructed a quantitative microbial risk model to predict gains in health attributable to water quality interventions based on a range of assumptions about pre-treatment water quality; treatment effectiveness in reducing bacteria, viruses, and protozoan parasites; adherence to treatment interventions; volume of water consumed per person per day; and other variables. According to mean estimates, greater than 500 DALYs may be averted per 100,000 person-years with increased access to safe water, assuming moderately poor pre-treatment water quality that is a source of risk and high treatment adherence (>90% of water consumed is treated). A decline in adherence from 100% to 90% reduces predicted health gains by up to 96%, with sharpest declines when pre-treatment water quality is of higher risk. CONCLUSIONS: Results suggest that high adherence is essential in order to realize potential health gains from HWT

    The paleobiological record of photosynthesis

    Get PDF
    Fossil evidence of photosynthesis, documented in Precambrian sediments by microbially laminated stromatolites, cyanobacterial microscopic fossils, and carbon isotopic data consistent with the presence of Rubisco-mediated CO2-fixation, extends from the present to ~3,500 million years ago. Such data, however, do not resolve time of origin of O2-producing photoautotrophy from its anoxygenic, bacterial, evolutionary precursor. Though it is well established that Earth’s ecosystem has been based on autotrophy since its very early stages, the time of origin of oxygenic photosynthesis, more than 2,450 million years ago, has yet to be established

    An Evolutionarily Conserved Arginine Is Essential for Tre1 G Protein-Coupled Receptor Function During Germ Cell Migration in Drosophila melanogaster

    Get PDF
    BACKGROUND: G protein-coupled receptors (GPCRs) play central roles in mediating cellular responses to environmental signals leading to changes in cell physiology and behaviors, including cell migration. Numerous clinical pathologies including metastasis, an invasive form of cell migration, have been linked to abnormal GPCR signaling. While the structures of some GPCRs have been defined, the in vivo roles of conserved amino acid residues and their relationships to receptor function are not fully understood. Trapped in endoderm 1 (Tre1) is an orphan receptor of the rhodopsin class that is necessary for primordial germ cell migration in Drosophila melanogaster embryos. In this study, we employ molecular genetic approaches to identify residues in Tre1 that are critical to its functions in germ cell migration. METHODOLOGY/PRINCIPAL FINDINGS: First, we show that the previously reported scattershot mutation is an allele of tre1. The scattershot allele results in an in-frame deletion of 8 amino acids at the junction of the third transmembrane domain and the second intracellular loop of Tre1 that dramatically impairs the function of this GPCR in germ cell migration. To further refine the molecular basis for this phenotype, we assayed the effects of single amino acid substitutions in transgenic animals and determined that the arginine within the evolutionarily conserved E/N/DRY motif is critical for receptor function in mediating germ cell migration within an intact developing embryo. CONCLUSIONS/SIGNIFICANCE: These structure-function studies of GPCR signaling in native contexts will inform future studies into the basic biology of this large and clinically important family of receptors

    Identification of the calcitonin receptor in osteoarthritic chondrocytes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Preclinical and clinical studies have shown that salmon calcitonin has cartilage protective effects in joint degenerative diseases, such as osteoarthritis (OA). However, the presence of the calcitonin receptor (CTR) in articular cartilage chondrocytes is yet to be identified. In this study, we sought to further investigate the expression of the CTR in naïve human OA articular chondrocytes to gain further confirmation of the existents of the CTR in articular cartilage.</p> <p>Methods</p> <p>Total RNA was purified from primary chondrocytes from articular cartilage biopsies from four OA patients undergoing total knee replacement. High quality cDNA was produced using a dedicated reverse transcription polymerase chain reaction (RT-PCR) protocol. From this a nested PCR assay amplifying the full coding region of the CTR mRNA was completed. Western blotting and immunohistochemistry were used to characterize CTR protein on protein level in chondrocytes.</p> <p>Results</p> <p>The full coding transcript of the CTR isoform 2 was identified in all four individuals. DNA sequencing revealed a number of allelic variants of the gene including two potentially novel polymorphisms: a frame shift mutation, +473del, producing a shorter form of the receptor protein, and a single nucleotide polymorphism in the 3' non coding region of the transcript, +1443 C>T. A 53 kDa protein band, consistent with non-glycosylated CTR isoform 2, was detected in chondrocytes with a similar size to that expressed in osteoclasts. Moreover the CTR was identified in the plasma membrane and the chondrocyte lacuna of both primary chondrocytes and OA cartilage section.</p> <p>Conclusions</p> <p>Human OA articular cartilage chondrocytes do indeed express the CTR, which makes the articular a pharmacological target of salmon calcitonin. In addition, the results support previous findings suggesting that calcitonin has a direct anabolic effect on articular cartilage.</p

    Genome-wide temporal-spatial gene expression profiling of drought responsiveness in rice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rice is highly sensitive to drought, and the effect of drought may vary with the different genotypes and development stages. Genome-wide gene expression profiling was used as the initial point to dissect molecular genetic mechanism of this complex trait and provide valuable information for the improvement of drought tolerance in rice. Affymetrix rice genome array containing 48,564 <it>japonica </it>and 1,260 <it>indica </it>sequences was used to analyze the gene expression pattern of rice exposed to drought stress. The transcriptome from leaf, root, and young panicle at three developmental stages was comparatively analyzed combined with bioinformatics exploring drought stress related <it>cis</it>-elements.</p> <p>Results</p> <p>There were 5,284 genes detected to be differentially expressed under drought stress. Most of these genes were tissue- or stage-specific regulated by drought. The tissue-specific down-regulated genes showed distinct function categories as photosynthesis-related genes prevalent in leaf, and the genes involved in cell membrane biogenesis and cell wall modification over-presented in root and young panicle. In a drought environment, several genes, such as <it>GA2ox, SAP15</it>, and <it>Chitinase III</it>, were regulated in a reciprocal way in two tissues at the same development stage. A total of 261 transcription factor genes were detected to be differentially regulated by drought stress. Most of them were also regulated in a tissue- or stage-specific manner. A <it>cis</it>-element containing special CGCG box was identified to over-present in the upstream of 55 common induced genes, and it may be very important for rice plants responding to drought environment.</p> <p>Conclusions</p> <p>Genome-wide gene expression profiling revealed that most of the drought differentially expressed genes (DEGs) were under temporal and spatial regulation, suggesting a crosstalk between various development cues and environmental stimuli. The identification of the differentially regulated DEGs, including TF genes and unique candidate <it>cis</it>-element for drought responsiveness, is a very useful resource for the functional dissection of the molecular mechanism in rice responding to environment stress.</p

    Intestinal carriage of Staphylococcus aureus: How does its frequency compare with that of nasal carriage and what is its clinical impact?

    Get PDF
    The bacterial species Staphylococcus aureus, including its methicillin-resistant variant (MRSA), finds its primary ecological niche in the human nose, but is also able to colonize the intestines and the perineal region. Intestinal carriage has not been widely investigated despite its potential clinical impact. This review summarizes literature on the topic and sketches the current state of affairs from a microbiological and infectious diseases' perspective. Major findings are that the average reported detection rate of intestinal carriage in healthy individuals and patients is 20% for S. aureus and 9% for MRSA, which is approximately half of that for nasal carriage. Nasal carriage seems to predispose to intestinal carriage, but sole intestinal carriage occurs relatively frequently and is observed in 1 out of 3 intestinal carriers, which provides a rationale to include intestinal screening for surveillance or in outbreak settings. Colonization of the intestinal tract with S. aureus at a young age occurs at a high frequency and may affect the host's immune system. The frequency of intestinal carriage is generally underestimated and may significantly contribute to bacterial dissemination and subsequent risk of infections. Whether intestinal rather than nasal S. aureus carriage is a primary predictor for infections is still ill-defined

    The Photosynthetic Apparatus and Its Regulation in the Aerobic Gammaproteobacterium Congregibacter litoralis gen. nov., sp. nov

    Get PDF
    BACKGROUND: There is accumulating evidence that in some marine environments aerobic bacteriochlorophyll a-producing bacteria represent a significant part of the microbial population. The interaction of photosynthesis and carbon metabolism in these interesting bacteria is still largely unknown and requires further investigation in order to estimate their contribution to the marine carbon cycle. METHODOLOGY/PRINCIPAL FINDINGS: Here, we analyzed the structure, composition and regulation of the photosynthetic apparatus in the obligately aerobic marine gammaproteobacterium KT71(T). Photoheterotrophically grown cells were characterized by a poorly developed lamellar intracytoplasmic membrane system, a type 1 light-harvesting antenna complex and a photosynthetic reaction center associated with a tetraheme cytochrome c. The only photosynthetic pigments produced were bacteriochlorophyll a and spirilloxanthin. Under semiaerobic conditions KT71(T) cells expressing a photosynthetic apparatus showed a light-dependent increase of growth yield in the range of 1.3-2.5 fold. The expression level of the photosynthetic apparatus depended largely on the utilized substrate, the intermediary carbon metabolism and oxygen tension. In addition, pigment synthesis was strongly influenced by light, with blue light exerting the most significant effect, implicating that proteins containing a BLUF domain may be involved in regulation of the photosynthetic apparatus. Several phenotypic traits in KT71(T) could be identified that correlated with the assumed redox state of growing cells and thus could be used to monitor the cellular redox state under various incubation conditions. CONCLUSIONS/SIGNIFICANCE: In a hypothetical model that explains the regulation of the photosynthetic apparatus in strain KT71(T) we propose that the expression of photosynthesis genes depends on the cellular redox state and is maximal under conditions that allow a balanced membrane redox state. So far, bacteria capable of an obligately aerobic, photosynthetic metabolism constitute a unique phenotype within the class Gammaproteobacteria, so that it is justified to propose a new genus and species, Congregibacter litoralis gen. nov, sp. nov., represented by the type strain KT71(T) ( = DSM 17192(T) = NBRC 104960(T))

    Cholinergic receptor pathways involved in apoptosis, cell proliferation and neuronal differentiation

    Get PDF
    Acetylcholine (ACh) has been shown to modulate neuronal differentiation during early development. Both muscarinic and nicotinic acetylcholine receptors (AChRs) regulate a wide variety of physiological responses, including apoptosis, cellular proliferation and neuronal differentiation. However, the intracellular mechanisms underlying these effects of AChR signaling are not fully understood. It is known that activation of AChRs increase cellular proliferation and neurogenesis and that regulation of intracellular calcium through AChRs may underlie the many functions of ACh. Intriguingly, activation of diverse signaling molecules such as Ras-mitogen-activated protein kinase, phosphatidylinositol 3-kinase-Akt, protein kinase C and c-Src is modulated by AChRs. Here we discuss the roles of ACh in neuronal differentiation, cell proliferation and apoptosis. We also discuss the pathways involved in these processes, as well as the effects of novel endogenous AChRs agonists and strategies to enhance neuronal-differentiation of stem and neural progenitor cells. Further understanding of the intracellular mechanisms underlying AChR signaling may provide insights for novel therapeutic strategies, as abnormal AChR activity is present in many diseases
    corecore