31 research outputs found

    Wnt, Hedgehog and Junctional Armadillo/β-Catenin Establish Planar Polarity in the Drosophila Embryo

    Get PDF
    To generate specialized structures, cells must obtain positional and directional information. In multi-cellular organisms, cells use the non-canonical Wnt or planar cell polarity (PCP) signaling pathway to establish directionality within a cell. In vertebrates, several Wnt molecules have been proposed as permissible polarity signals, but none has been shown to provide a directional cue. While PCP signaling components are conserved from human to fly, no PCP ligands have been reported in Drosophila. Here we report that in the epidermis of the Drosophila embryo two signaling molecules, Hedgehog (Hh) and Wingless (Wg or Wnt1), provide directional cues that induce the proper orientation of Actin-rich structures in the larval cuticle. We further find that proper polarity in the late embryo also involves the asymmetric distribution and phosphorylation of Armadillo (Arm or β-catenin) at the membrane and that interference with this Arm phosphorylation leads to polarity defects. Our results suggest new roles for Hh and Wg as instructive polarizing cues that help establish directionality within a cell sheet, and a new polarity-signaling role for the membrane fraction of the oncoprotein Arm

    Genome-Wide Association Analysis of Oxidative Stress Resistance in Drosophila melanogaster

    Get PDF
    Background: Aerobic organisms are susceptible to damage by reactive oxygen species. Oxidative stress resistance is a quantitative trait with population variation attributable to the interplay between genetic and environmental factors. Drosophila melanogaster provides an ideal system to study the genetics of variation for resistance to oxidative stress. Methods and Findings: We used 167 wild-derived inbred lines of the Drosophila Genetic Reference Panel for a genomewide association study of acute oxidative stress resistance to two oxidizing agents, paraquat and menadione sodium bisulfite. We found significant genetic variation for both stressors. Single nucleotide polymorphisms (SNPs) associated with variation in oxidative stress resistance were often sex-specific and agent-dependent, with a small subset common for both sexes or treatments. Associated SNPs had moderately large effects, with an inverse relationship between effect size and allele frequency. Linear models with up to 12 SNPs explained 67–79 % and 56–66 % of the phenotypic variance for resistance to paraquat and menadione sodium bisulfite, respectively. Many genes implicated were novel with no known role in oxidative stress resistance. Bioinformatics analyses revealed a cellular network comprising DNA metabolism and neuronal development, consistent with targets of oxidative stress-inducing agents. We confirmed associations of seven candidate genes associated with natural variation in oxidative stress resistance through mutational analysis. Conclusions: We identified novel candidate genes associated with variation in resistance to oxidative stress that hav

    A contractile actomyosin network linked to adherens junctions by Canoe/afadin helps drive convergent extension

    Get PDF
    Coordination of adhesion and the actin cytoskeleton is critical in morphogenesis. Drosophila germband extension is a model for convergent extension. Canoe/afadin is found to have a novel role in this process. It helps to coordinate a contractile apical actomyosin network with cell shape change and regulates apical polarity protein localization
    corecore