145 research outputs found

    Incorporation of Robustness Properties into the Observer Based Anti-Windup Scheme in the Case of Actuator Uncertainties

    Get PDF
    Abstract-Saturation is a very common nonlinearity in control systems and may produce serious performance deterioration or even loss of stability. To cope with saturation, several anti-windup (AW) schemes have been developed over a long time. Unfortunately, they are based on the assumption that there is a static nonlinearity between the output of the controller and the plant input, which, in many situations, is not the case, because of an actuator dynamics. Against this background we provide a design procedure for the design of the AW-compensator that guarantee stability of the observer based anti-windup to face unmodeled actuator dynamics and guarantee a certain level of performance. This mixed performance method is later extended for systems with unmeasurable actuator outputs by the use of an unknown input observer (UIO). The effectiveness of the presented algorithm is demonstrated on an engine test-bench simulator. I. INTRODUCTION S result of physical limitations, the output of actuators is always limited in amplitude and rate, such as maximum or minimum torque in an engine or the maximum safe pitch rate in an aircraft. Such limits must be taken in account in the control design, otherwise the controller output will be different from the plant input, leading to wrong update of the controller states and to consequences ranging from performance deterioration over large overshoots and sometimes even to limit cycles or stability loss. Therefore, this phenomenon -usually called "controller windup" -has a paramount practical relevance and therefore many existing techniques address this problem of actuator constraints, e.g. the "Model Predictive Control" (MPC) Among the many contributions to handle input constraints for this class of problems, we recall the recent surveys of Galeani [3], Tarbouriech and Turner [4] about early and recent anti-windup research. The observer-based antiwindup design goes back to the publications of Åström and Hägglund Martin Bruckner and Luigi del Re are with the Institute for Design and Control of Mechatronical Systems (e-mail: [email protected]; [email protected]). In the case of actuator or plant uncertainties there are only a few contributions, such as the approach of Teel In this paper based on the Integral-Quadratic-Constraints (IQCs) framework we extend the observer-based antiwindup design procedure to handle actuator uncertainties and present a design procedure that allows tuning the AW for performance requirements. To this end two weighting matrices are introduced in the performance criteria. In addition some nicely interpretable rules are provided for choosing the weighting matrices. In the case, where the true plant input can't be measured the closed-loop system is extended with an unknown input observer (UIO). To the best of our knowledge, we are not aware of any work in the literature dealing with a mixed performance AW-design, jointly tackling both, unmeasurable actuator outputs and dynamic actuator uncertainty. All these algorithms are tested on an engine test-bench simulation example. The paper is structured as follows: first we introduce the observer based anti-windup compensator and present some robust stability considerations in the case of actuator uncertainties based on the IQC-framework. Afterwards an UIO is introduced to keep the performance in the case, when the output of the actuator isn't available for measurement. Finally the method is tested on a test-bench simulator. II. OBSERVER BASED ANTI-WINDUP DESIGN For reasons of global stability, throughout the paper the plant P of order n is assumed to be stable, and that the controller ( , , , ) c c c c A B C D stabilizes the system when the saturation is not active. The plant is described by the standard equations: is the state-space realization of the controller and L is the desired feedback matrix of the antiwindup compensator (se

    "Open Innovation" and "Triple Helix" Models of Innovation: Can Synergy in Innovation Systems Be Measured?

    Get PDF
    The model of "Open Innovations" (OI) can be compared with the "Triple Helix of University-Industry-Government Relations" (TH) as attempts to find surplus value in bringing industrial innovation closer to public R&D. Whereas the firm is central in the model of OI, the TH adds multi-centeredness: in addition to firms, universities and (e.g., regional) governments can take leading roles in innovation eco-systems. In addition to the (transversal) technology transfer at each moment of time, one can focus on the dynamics in the feedback loops. Under specifiable conditions, feedback loops can be turned into feedforward ones that drive innovation eco-systems towards self-organization and the auto-catalytic generation of new options. The generation of options can be more important than historical realizations ("best practices") for the longer-term viability of knowledge-based innovation systems. A system without sufficient options, for example, is locked-in. The generation of redundancy -- the Triple Helix indicator -- can be used as a measure of unrealized but technologically feasible options given a historical configuration. Different coordination mechanisms (markets, policies, knowledge) provide different perspectives on the same information and thus generate redundancy. Increased redundancy not only stimulates innovation in an eco-system by reducing the prevailing uncertainty; it also enhances the synergy in and innovativeness of an innovation system.Comment: Journal of Open Innovations: Technology, Market and Complexity, 2(1) (2016) 1-12; doi:10.1186/s40852-016-0039-

    Functional consequences of the long-term decline of reef-building corals in the Caribbean: evidence of across-reef functional convergence

    Get PDF
    This is the final version. Available on open access from the Royal Society via the DOI in this recordFunctional integrity on coral reefs is strongly dependent upon coral cover and coral carbonate production rate being sufficient to maintain three-dimensional reef structures. Increasing environmental and anthropogenic pressures in recent decades have reduced the cover of key reef building species, producing a shift towards the relative dominance of more stress tolerant taxa and leading to a reduction in the physical functional integrity reef function. Understanding how changes in coral community composition influence the potential of reefs to maintain their physical reef functioning is a priority for their conservation and management. Here, we evaluate how coral communities have changed in the northern sector of the Mexican Caribbean between 1985 and 2016, and the implications for the maintenance of physical reef functions in the back and fore-reef zones. We used the cover of coral species to explore changes in four morpho-functional groups, coral community composition, coral community calcification, the reef functional index and the reef carbonate budget. Over a period of 31 years, ecological 33homogenization occurred between the two reef zones mostly due a reduction in the cover of framework-building branching (Acropora spp.) and foliose-digitiform (Porites porites and Agaricia tenuifolia)coral species in the back-reef, and a relative increase of non-framework species in the fore-reef (Agaricia agaricites and Porites astreoides). This resulted in a significant decrease in the physical functionality of the back-reef zone. At present both reef zones have negative carbonate budgets, and thus limited capacity to sustain reef accretion, compromising the existing reef-structure and its future capacity to provide habitat and environmental services.Royal Societ

    Interaction between M-Like Protein and Macrophage Thioredoxin Facilitates Antiphagocytosis for Streptococcus equi ssp. zooepidemicus

    Get PDF
    Streptococcus equi ssp. zooepidemicus (S. zooepidemicus, S.z) is one of the common pathogens that can cause septicemia, meningitis, and mammitis in domesticated species. M-like protein (SzP) is an important virulence factor of S. zooepidemicus and contributes to bacterial infection and antiphagocytosis. The interaction between SzP of S. zooepidemicus and porcine thioredoxin (TRX) was identified by the yeast two-hybrid and further confirmed by co-immunoprecipitation. SzP interacted with both reduced and the oxidized forms of TRX without inhibiting TRX activity. Membrane anchored SzP was able to recruit TRX to the surface, which would facilitate the antiphagocytosis of the bacteria. Further experiments revealed that TRX regulated the alternative complement pathway by inhibiting C3 convertase activity and associating with factor H (FH). TRX alone inhibited C3 cleavage and C3a production, and the inhibitory effect was additive when FH was also present. TRX inhibited C3 deposition on the bacterial surface when it was recruited by SzP. These new findings indicated that S. zooepidemicus used SzP to recruit TRX and regulated the alternative complement pathways to evade the host immune phagocytosis

    Changing Patterns of Microhabitat Utilization by the Threespot Damselfish, Stegastes planifrons, on Caribbean Reefs

    Get PDF
    Background: The threespot damselfish, Stegastes planifrons (Cuvier), is important in mediating interactions among corals, algae, and herbivores on Caribbean coral reefs. The preferred microhabitat of S. planifrons is thickets of the branching staghorn coral Acropora cervicornis. Within the past few decades, mass mortality of A. cervicornis from white-band disease and other factors has rendered this coral a minor ecological component throughout most of its range. Methodology/Principal Findings: Survey data from Jamaica (heavily fished), Florida and the Bahamas (moderately fished), the Cayman Islands (lightly to moderately fished), and Belize (lightly fished) indicate that distributional patterns of S. planifrons are positively correlated with live coral cover and topographic complexity. Our results suggest that speciesspecific microhabitat preferences and the availability of topographically complex microhabitats are more important than the abundance of predatory fish as proximal controls on S. planifrons distribution and abundance. Conclusions/Significance: The loss of the primary microhabitat of S. planifrons—A. cervicornis—has forced a shift in the distribution and recruitment of these damselfish onto remaining high-structured corals, especially the Montastraea annulari
    corecore