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Abstract— Saturation is a very common nonlinearity in 
control systems and may produce serious performance 
deterioration or even loss of stability. To cope with saturation, 
several anti-windup (AW) schemes have been developed over a 
long time. Unfortunately, they are based on the assumption 
that there is a static nonlinearity between the output of the 
controller and the plant input, which, in many situations, is not 
the case, because of an actuator dynamics. Against this 
background we provide a design procedure for the design of 
the AW-compensator that guarantee stability of the observer 
based anti-windup to face unmodeled actuator dynamics and 
guarantee a certain level of performance. This mixed 
performance method is later extended for systems with 
unmeasurable actuator outputs by the use of an unknown input 
observer (UIO). The effectiveness of the presented algorithm is 
demonstrated on an engine test-bench simulator. 

I. INTRODUCTION 
S result of physical limitations, the output of actuators 
is always limited in amplitude and rate, such as 

maximum or minimum torque in an engine or the maximum 
safe pitch rate in an aircraft. Such limits must be taken in 
account in the control design, otherwise the controller output 
will be different from the plant input, leading to wrong 
update of the controller states and to consequences ranging 
from performance deterioration over large overshoots and 
sometimes even to limit cycles or stability loss. Therefore, 
this phenomenon – usually called “controller windup” – has 
a paramount practical relevance and therefore many existing 
techniques address this problem of actuator constraints, e.g. 
the “Model Predictive Control” (MPC) [1] or even the 
traditional “Anti-Windup (AW) Compensator” [2]. 

Among the many contributions to handle input constraints 
for this class of problems, we recall the recent surveys of 
Galeani [3], Tarbouriech and Turner [4] about early and 
recent anti-windup research. The observer-based anti-
windup design goes back to the publications of Åström and 
Hägglund [5] and Åström and Rundqwist [6]. All these 
methods, however, are based on the assumption that the 
actual plant input, i.e. the saturation output, is available 
together with the control output. In practice, however, this 
will be frequently not the case, as many saturation occur 
inside the process. To cope with this problem, other 
approaches have been developed which rely on robustness 
to cope with poorly known actuators. 
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In the case of actuator or plant uncertainties there are only 
a few contributions, such as the approach of Teel [7], 
Sofrony [8], Turner [9] or Galeani [10], which consider the 
robustness of the anti-windup compensator in the design 
procedure. 

In this paper based on the Integral-Quadratic-Constraints 
(IQCs) framework we extend the observer-based anti-
windup design procedure to handle actuator uncertainties 
and present a design procedure that allows tuning the AW 
for performance requirements. To this end two weighting 
matrices are introduced in the performance criteria. In 
addition some nicely interpretable rules are provided for 
choosing the weighting matrices. In the case, where the true 
plant input can’t be measured the closed-loop system is 
extended with an unknown input observer (UIO). To the 
best of our knowledge, we are not aware of any work in the 
literature dealing with a mixed performance AW-design, 
jointly tackling both, unmeasurable actuator outputs and 
dynamic actuator uncertainty. All these algorithms are tested 
on an engine test-bench simulation example. 

The paper is structured as follows: first we introduce the 
observer based anti-windup compensator and present some 
robust stability considerations in the case of actuator 
uncertainties based on the IQC-framework. Afterwards an 
UIO is introduced to keep the performance in the case, when 
the output of the actuator isn’t available for measurement. 
Finally the method is tested on a test-bench simulator. 

II. OBSERVER BASED ANTI-WINDUP DESIGN 
For reasons of global stability, throughout the paper the 

plant P  of order n  is assumed to be stable, and that the 
controller ( , , , )c c c cA B C D stabilizes the system when the 
saturation is not active. The plant is described by the 
standard equations: 

 
( )p p p P c

p p p

x A x B sat u
P

y C x

= ⋅ + ⋅⎧⎪
⎨ = ⋅⎪⎩

 (1) 

where ,n m
p cx u∈ ∈  and p

py ∈ . 
A simple and effective way to handle input constraints is 

by adding a term of the form [ ( ) ]c cL sat u u⋅ − to the controller 
dynamics which leads to the observer based anti-windup 
compensator (static AW) [11]: 

 ˆ ˆ [ ( ) ]
ˆ

c c c c c c

c c c c

x A x B e L sat u u
C

u C x D e
⎧ = ⋅ + ⋅ + −
⎨

= ⋅ + ⋅⎩
 (2) 

where ( , , , )c c c cA B C D  is the state-space realization of the 
controller and L  is the desired feedback matrix of the anti-
windup compensator (see Fig. 1).  
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Fig. 1 Observer-based anti-windup scheme 

In equation (2) e  represents the tracking error, ( )csat u the 
actual input to the linear plant and L  the anti-windup gain.  
In this context it has to be mentioned, that an additional 
direct feedthrough term [ ( ) ]c cL sat u u⋅ −  (see e.g. [12]) in the 
output equations of the controller (2) can improve the 
performance in the nominal case but may cause problems in 
the robust case and therefore is not considered in this work. 

III. IQC-FRAMEWORK 
Integral quadratic constraints (IQCs) provide a unified 

framework for the robustness analysis of feedback 
interconnections of LTI plants and perturbation blocks Fig. 
2. Although a unifying IQC-framework was introduced by 
Megretzki and Rantzer [13], the main ideas originate from 
Yakubovich (e.g. [14]). 

The purpose of the IQCs in this paper is to exploit 
structural information about the saturation function ( )sat ⋅  
and the actuator uncertainty and use this information to 
guarantee robust stability of the observer-based AW-
compensator. To this end for observer-based AW synthesis 
the frequency dependent equations for robust-stability based 
on IQCs are transformed by the Kalman-Yakubovich-Popov 
(KYP) lemma to Linear Matrix Inequalities (LMIs). In the 
case of the actuator uncertainty the LMIs offers a tradeoff 
between robust-stability and robust performance. 

 
Fig. 2 Basic feedback configuration 

IQCs are used for stability analysis of a feedback 
interconnection (see Fig. 2)  

 
( )
( )

v G s w f
w v e

= +
= Δ +

 (3) 

where ( )G s RH∞∈  and Δ  is a causal operator. This feedback 
interconnection of G  and Δ  is well-posed if the map 
( , ) ( , )v w e f  defined by (3) has a causal inverse on 2eL . 
The interconnection is stable if, in addition the inverse is 
bounded, i.e., if there exists a constant 0C >  such that 

 2 2 2 2

0 0
( ) ( )

T T
v w dt C f e dt+ ≤ +∫ ∫  (4) 

for any 0T ≥  and for any solution of (3). In the linear case 
this is equivalent to I G− Δ  is causally invertible. 

The causal uncertainty block Δ  satisfies an IQC with a 
matrix-valued function *( ) ( )i iω ωΠ = Π  that is bounded on 
the imaginary axis 0  if: 

 
*

2
( ) ( )( ) 0 [0, )

ˆ ˆ( ) ( )
v i v ii d v L

v i v i
ω ωω ω

ω ω

∞

−∞

⎛ ⎞ ⎛ ⎞Δ ΔΠ ≥ ∀ ∈ ∞⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∫  (5) 

where denotes the Fourier transform. If the uncertainty Δ  
defined by an IQC according to (5) includes all available 
structure information on Δ , the stability of the feedback 
interconnection (3) can be proven with the following 
theorem. 
Theorem 1: ([13]) Let ( )G s RH∞∈  and Δ  a bounded causal 
operator and assume that: 
1) for every [0,1]τ ∈ , the interconnection of τ Δ  and G is 

well-posed 
2) for every [0,1]τ ∈ , the IQC defined by Π  is satisfied by 

τ Δ  
3) there exists 0ε >  such that 

 
*( ) ( )

( )
G i G i

i I
I I
ω ω

ω ε ω⎡ ⎤ ⎡ ⎤Π ≤ − ∀ ∈⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 (6) 

Then, the feedback interconnection (3) is stable.  
Thanks to the KYP lemma we are able to transform the 

frequency domain criterion (6) into equivalent conditions on 
the system matrices in the realization of the transfer function 
G  and Π  [15]. In our case we are using a realization of 

1( )G C I A B Dιω −= − +  and a constant multiplier ( )i MωΠ =  
and therefore we get: 

 

*

*

1 1

( )
( ) ( )

( ) ( )

I I
i

G i G i

I I
M I

C i I A B D C i I A B D

ω
ω ω

ε
ω ω− −

⎡ ⎤ ⎡ ⎤Π⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤= ≤ −⎢ ⎥ ⎢ ⎥− + − +⎣ ⎦ ⎣ ⎦

 (7) 

Then (7) is equivalent to the existence of 0TP P= > such 
that: 

 

0 0 0 0 0
0 0 0

0;
0 0 0 0

0 0

T

T

T

I P I
A B P A B Q S

M
I Q S I S R

C D S R C D

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥ < = ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (8) 

In order to show stability a constant multiplier matrix M  
according to (8) is derived in the case of the deadzone 
function ( )dz ⋅ and a combination of the actuator uncertainty 
and ( )dz ⋅ .  

IV. SYSTEMATIC DESIGN METHOD OF THE ANTI-WINDUP 
OBSERVER GAIN MATRIX L 

In this section a systematic method to design the feedback-
gain L  of the AW-compensator is presented, which satisfies 
the following specifications: 
1) The stability of the closed-loop system against input 

magnitude saturation is guaranteed. 
2) The AW-compensator gain L  should be designed such 

that the weighted difference in the controller states 
between the linear unsaturated and the nonlinear 
saturated case is minimized.  

Therefore to transform this nonconvex optimization problem 
into a convex one, replace in Fig. 1 ( ) ( )c c csat u u dz u= − . As a 
result the closed-loop system has the following structure 
(see Fig. 3): 

 1

1 1 1 1

( )

, , , ( )
w L

T
p c c

x Ax B B L w

z Cx x x x z u w dz z

= + +

= = = =⎡ ⎤⎣ ⎦
 (9) 

and A , wB , LB  and C  can easily be computed from the 
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system equation (1) and the controller equation (2), where 
the transformation of the saturation function is used. 

In order to use the IQC-framework for the design of L  a 
multiplier and a certain performance criteria is necessary. 
Therefore to derive the constant multiplier matrix for 

( )dz ⋅ the sector condition in the sector [0 ]Kκ is used: 

 1 1

0
1 1

2
0

0

T

M

w I K w
dt

z K z
κ

κ

∞ −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ≥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦∫  (10) 

 
Fig. 3 Observer-based AW with deadzone function 

The usage of the constant multiplier M  of (10) in (11) is 
equivalent to the application of the multivariable circle 
criterion [13]. Hence for stability the following LMI has to 
be fulfilled: 

 

0 0 00 0
0 0 0

0
0 0 20 0
0 0 00 0

T

w L w L

QI I
QA B B L A B B L

I KI I
KC C

κ

κ

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥+ +⎢ ⎥⎢ ⎥ ⎢ ⎥ <
⎢ ⎥⎢ ⎥ ⎢ ⎥−
⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦

 (11) 

It has to be mentioned that in (11) the bilinear matrix 
inequality (BMI) can be transformed due to a congruence 
transformation 1( , )diag Q I−  and a variable transformation 

1Q X− =  to the first LMI in (14). If Kκ  is equivalent to the 
identity matrix I , global stability can be guaranteed by the 
LMI in (11). Since we want to reach the performance of the 
linear unsaturated controller after saturation as fast as 
possible, for the performance criteria the weighted difference 
in the controller states between the linear unsaturated 
[ ]T

p cx x  and saturated nonlinear ˆ ˆ T
p cx x⎡ ⎤⎣ ⎦  case is chosen: 

 
1( )

ˆ [0 ]
p

w L c

p c c c

C

A B B L R w

z x x Q I

ξ ξ

ξ

= − +

= − =  (12) 

where  

 
1

1
,

ˆ ˆˆ, , , 0, 0
ˆ ˆ

( ) ( )
p

p p p p
c c

c c c c

z w c p w L c

x x x x
R Q

x x x x
T Q C sI A B B L R

ξ ξ ξ

−

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = = > >⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦
= − +

 (13) 

and the weighted 2H -norm is minimized. cQ  is necessary 
for the weighting of the discrepancy in the controller states 
and cR  can be used to consider the more critical saturated 
input to the process for the performance criteria. The overall 
resulting LMI for the design of L  has the following form: 

 

min
. .

0, 0
2

( )
0, 0

( ) , 0, 0;

T T
w L

T T T
w L cc p

s t
XA AX B B L XC K

X
I

K B B L RAK KA KQ C
ZI

trace Z K

κ

γ

γ
γ γ

+ + +⎡ ⎤
< >⎢ ⎥∗ − ⋅⎣ ⎦
− −+⎡ ⎤ ⎡ ⎤< >⎢ ⎥ ⎢ ⎥∗∗ − ⋅ ⎣ ⎦⎣ ⎦

< > >

(14) 

In (14) the first two inequalities are responsible for stability 
of the closed-loop system and the remaining inequalities are 
for ensuring a certain 2H -performance criteria, where K  
represents the observability gramian. The goal of the AW-
compensator is to recover the desired linear controller 
performance after saturation as fast as possible. Hence the 
tuning of the AW-compensator is done by just choosing the 
weighting matrices cQ  and cR  in (13). The selection of the 
weights is intuitive: high values in cR  are chosen for the 
critical actuators. The values in cQ  are used to selectively 
weight those controller states errors which are considered to 
be more critical than the others. To find out the critical 
states, the difference between the linear unsaturated and the 
nonlinear saturated controller states is considered. If the 
LMI in (14) is fulfilled and the performance is satisfying 
you are done, otherwise you have to adapt the weights cQ  
and cR . Notice that the degree of freedom in the choice of 
the weighting matrices is important to enforce the feasibility 
of (14) and a desired performance. 

V. ROBUST OBSERVER BASED ANTI-WINDUP 
In the case of actuator uncertainties (Fig. 4) the observer-

gain L  has to fulfill the specifications: 
1) The stability of the closed-loop system against input 

magnitude saturation and some unknown norm-bounded 
actuator dynamics has to be guaranteed. 

2) The weighted difference in the controller states between 
the linear unsaturated and the nonlinear saturated case is 
minimized. 

To be robust in the face of the uncertainty, a multiplier 
fulfilling (5) and (6) has to be derived. Therefore the 
actuator dynamics is modeled by a multiplicative 
uncertainty: 

 ( ) ( )Act Acts I sΔ = + Δ  (15) 
where ( )Act s RH∞Δ ∈ with ( )Act s γ

∞
Δ < . In the case of the 

norm bounded actuator uncertainty ActΔ , the closed-loop 
system has the following structure: 

 
1 2

1

2 1 1

( ) ( )w L w Lx Ax B B L w B B L w
z Cx
z z w

= − + + +
=
= +

 (16) 

where 
1 1 1

1
2 2 2

, , ,
( )

p c
c

c c c

x uz w z
x z u z w

x u uz w dz z
Δ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = = = = =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ Δ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

 (17) 

 
Fig. 4 Unmodelled actuator dynamics 

The multiplier of the ( )dz ⋅  and ActΔ , can be derived firstly 
using the sector condition of ( )dz ⋅ in the sector [0 ]Kκ : 

 2 1 1 1 1 2 2 20
( ( ) ( ) 2 ) 0T T Tw K w z w z K w w w dtκ κ

∞
+ + + − ≥∫  (18) 
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and secondly bounding the actuator uncertainty by the H∞ -
norm ( )Act s γ

∞
Δ < : 

 2
1 1 1 10

( ) 0T Tz z w w dtγ
∞

− >∫  (19) 

As a result of combining (18) and (19), the constant 
multiplier matrix has the following structure: 

 
1 1

2 2 1 20
2

1 1

0
2 0 ,

0

Tw I K w
w K I K w dt w w
z K I z

κ

κ κ

κ γ

∞
⎛ ⎞−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥− ≥ ∀ ∈⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

∫  (20) 

Hence the closed-loop system (16) with the norm-bounded 
actuator uncertainty is stable if: 

2

0 0 0 0 0 0

0 0 0 0

00 0 0* 0 0

0 0 2 0 0

0 0 0 0 0

T

w L w L

Q I

Q A B B L B B L

I K I

K I K I

K I C

κ

κ κ

κ γ

−

<−

−

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥− +⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

 (21) 

where [ ]*  is used for expressions that can be derived by 
symmetry. After applying the Schur complement, a 
congruence transformation 1( , , , )diag Q I I I−  and a variable 
transformation 1Q X− = , the BMI in (21) can be transformed 
to the first LMI in (22). Similar to (12) again the 2H -norm 
from the input 2w  to the error in the controller states ξ  is 
minimized. Then the design of the AW-compensator is a 
tradeoff between robust stability and performance: 

 

1 2min

. .

* 0
0

* * 2 0
* * *

10; 0;

( )
0; 0

0; 0; ( )

p

T T T
w L w L

T T T
c p w L c

p

p p

s t
XA AX B B L B B L XC K XC

I K
I

X

AK KA K Q C K B B L R
I Z

K trace Z

κ

κ

α γ α γ

γ

γ γ
γ

γ

γ γ

Δ

Δ

Δ
Δ

+

+ − − + +⎡ ⎤
⎢ ⎥−⎢ ⎥ <
⎢ ⎥−
⎢ ⎥

−⎣ ⎦

> > =

+ ⋅ − −⎡ ⎤ ⎡ ⎤< >⎢ ⎥ ⎢ ⎥∗ − ⋅ ∗⎣ ⎦⎣ ⎦
> > <

(22) 

In (22) the LMIs one to three are responsible for the closed-
loop stability and the remaining LMIs for the inclusion of 
the 2H -performance criterion. Thanks to this design 
procedure it is possible to ensure stability of the closed-loop 
system for all norm bounded uncertainties ( )Act sΔ  with 

( )Act s γ
∞

Δ < . At the same time it is also possible to evaluate 
the maximum tolerable level of the actuator dynamic 
uncertainty: 

 ( ) 1 ( )Act Acts s∞ ∞
Δ ≤ + Δ  (23) 

VI. UNKNOWN INPUT OBSERVER TO COPE WITH ACTUATOR 
UNCERTAINTIES 

In real life applications it is often the case that the true plant 
input, the output of the actuator is not available for 
measurement. Therefore an unknown input observer (UIO) 
is introduced to estimate the true input of the plant pu , such 
that the AW-compensator designed by (22) can still be used. 

It has to be mentioned, that the UIO is only necessary if an 
unknown dynamics is present in the actuator. Due to this 
scheme, the performance in the case of actuator uncertainties 
and not measurable plant inputs can be kept similarly to the 
case where the plant input is available. To estimate the true 
plant input we assume to have a linear system in the form:  

 p p p p p

p p p

x A x B u
P

y C x

= ⋅ + ⋅⎧⎪
⎨ = ⋅⎪⎩

 (24) 

with pA  stable and we want to reconstruct pu  from py . For 
simplicity we consider pu  as a constant, i.e. 0pu =  and 
therefore pu  can be added as a state to the plant P : 

 

[ ]

0 0

0 , 0ˆ

ext

u pext

p pp p

p p

xA
ext

p p
p p p

p pCC

x xA B
u u

P
x x

y C u I
u u

⎧⎡ ⎤ ⎡ ⎤⎡ ⎤= ⋅⎪⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦⎪
⎪
⎨
⎪ ⎡ ⎤ ⎡ ⎤

= ⋅ = ⋅⎡ ⎤⎪ ⎢ ⎥ ⎢ ⎥⎣ ⎦
⎣ ⎦ ⎣ ⎦⎪⎩

 (25) 

Of course, there are other possibilities for input 
deconvolution in literature [16]. However our choice is 
motivated by the application example, which is presented in 
the paper, section VII. Using an observer obsP  with the state-
space description: 

 
ˆ ˆ ˆ( )
ˆ ˆ ˆ ˆ,

p

ext UIO p p
obs

p ext p u

x A x L y y
P

y C x u C x

⎧ = ⋅ + ⋅ −⎪
⎨

= ⋅ = ⋅⎪⎩
 (26) 

and the following error dynamics equation: 

 
ˆ ˆ ˆ( )

( )
obs ext ext UIO p p

obs ext UIO ext obs

x x A x A x L y y

A L C

ξ

ξ ξ

= − = ⋅ − ⋅ − ⋅ −

= − ⋅ ⋅
 (27) 

which converges to zero if ( )ext UIO extA L C− ⋅ is Hurwitz, the 
estimated plant input converges to true plant input: 

 ˆ
pp p u obsu u C ξ− = ⋅  (28) 

As a result the true input to the plant can be estimated and is 
equivalent to the state ˆ pu . Now using an 
observer 2( , , ...)H H etc∞  a virtual plant input ˆ pu  is available 
for the anti-windup design. 
Although there is an additional dynamic system in the 
closed-loop system which has to be considered for stability 
the performance can be kept similarly. To prove the stability 
of the extended version with the UIO, we take the L  
designed by (22) and derive a LMI feasibility problem 
according to the IQC-framework.  

 
Fig. 5 Extended observer-based AW-scheme with UIO for actuator 

uncertainties ( pu …true plant input, ˆ pu …estimated plant input) 

VII. APPLICATION: ENGINE TEST-BENCH 

A. Plant Description 
The following Fig. 6 shows the combustion engine test-

bench system, consisting of a dynamometer, which is 
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simulating the load, a common connection shaft and the 
engine itself. The control objective for the test-bench system 
is to follow simultaneously a reference trajectory of the 
engine torque and the engine speed using the control 
variables accelerator pedal α  and the torque of the 
dynamometer DT . The accelerator pedal can be 
approximated by a time delay, a magnitude saturation and a 
second order low-pass filter. To consider the delay time of 
the accelerator pedal it is modeled with a pade-
approximation and added to the model. The dynamometer is 
modeled similar except the dead-time element. The resulting 
MIMO-control consists of two inputs and two outputs. The 
mathematical model has the following structure: 

 
1

1

,

( ( ) )

( ( ))

( , ) ( , )

E D

D D E D D

E E E E D

E E E E E Stat

c d T

T c d

T T T

ϕ ω ω

ω θ ϕ ω ω

ω θ ϕ ω ω

ρ ω α ρ ω α

−

−

Δ = −

= Δ + − −

= − Δ − −

= − +

 (29) 

where the constaints of the actuators can be summarized: 
 max min ,max ,min100%, 0%, 295 , 295D DT Nm T Nmα α= = = = − (30) 

For a detailed description of the engine test-bench, see [17]. 

 
Fig. 6 Engine test-bench 

 
The unconstrained H∞ -controller of order 20  with integral 

action is designed to get offset tracking and offers a 
satisfying performance. 

B. Magnitude Saturation + Weighting Matrices Qc, Rc 
In the first case the advantage of using weighting matrices 

in the AW-design procedure should be clarified. As it can be 
seen in Fig. 7, minimizing a performance criterion leads to 

an undesired shift in the performance weighting. To this end 
the introduction of the weighting matrices allows to tune the 
AW-compensator. The output response in the shaft-torque 
tracking can be improved significantly, while the engine 
speed-tracking is kept close to the design without weighting 
matrices. It is to mention that due to the rules in section IV it 
is easy to get this result. 

C. Magnitude Saturation + Unmodelled Actuator 
dynamics + Unknown Input Observer 
In this example the robustness of the proposed method is 

tested by extending the nominal plant with an unmodeled 
dynamics of the accelerator pedal , ( )act sαΔ  and the 
dynamometer , ( )

Dact T sΔ .  
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This unmodeled actuator dynamics drives the saturated plant 
to a limit cycle at the shaft torque tracking. The output due 
to our robust AW-design can cancel the oscillations in the 
actuators and hence in the shaft-torque tracking, although 
the performance degrades. In the case where the actuator 
output is not available, we add the unknown input observer 
to the closed-loop system to estimate the true input. In order 
to get a good estimate of the virtual plant input a high 
process noise has to be assumed in the weighting of this 
channel. As it can be seen in Fig. 8, the performance can be 
kept comparable to the case where plant input can be 
measured.  

D. Brief Summary of the Results 
The results confirm that it is possible to robustify the 

design of the AW-compensator, although the performance is 
not completely satisfying yet. An additional direct 
feedthrough term [ ( ) ]c cL sat u u⋅ −  in the output equations of 
the controller (1) may improve the performance, and 
therefore should be considered in future work. However it is 
possible to get rid of the oscillations. The allowable norm 
bounded uncertainties are summarized in TABLE I. The 
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table shows that the maximum robustness is reached with 
the robust AW-design procedure. Due to the performance-
robustness tradeoff it would be possible to get a more robust 
AW-compensator.  

TABLE I  
COMPARISON OF THE ROBUSTNESS OF THE DIFFERENT AW-COMPENSATORS 

Description Abbreviation 
Allowable norm bounded 
actuator uncertainty γ  

AW without 
weighting 

AW  1.82 

AW + weighting 
,c cQ RAW  1.58 

AW + weighting + 
robust 

, ,c c ActQ RAW Δ
 2.21 

VIII. CONCLUSION 
The main result of the paper is the derivation of a robust 

mixed performance design procedure based on the IQC-
framework for the observer-based AW. It guarantees closed-
loop stability for all norm bounded actuator uncertainties 
and a certain level of performance. The presented algorithm 
shows a good performance in the case of input magnitude 
constraints and actuator uncertainties. If the proposed 
scheme is augmented with an unknown input observer in the 
case of not measurable plant inputs, the performance can be 
kept on a satisfying level. Furthermore straightforward rules 
for the selection of weighting matrices in the design 
procedure of the observer-based AW-compensator are 
provided, which helps to improve the performance and are 
really necessary for real-life application examples. 

In summary, even though the proposed scheme has a 
simple structure, it works quite well and therefore it is 
highly recommended for real applications, which has been 
shown on the verified engine test-bench simulator.  

The developed algorithms should be tested on our real-life 
engine test-bench. For future work the direct feedthough 
term in the controller output should be considered. 
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